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PREFACE

The Second International Workshop on Squeezed States and Uncertainty Relations was held
in Moscow on May 25 — 29, 1992. This Workshop was organized jointly by the P. N. Lebedev
Physics Institute of the Academy of Sciences of the Russian Republic and the University of
Maryland at College Park. The Workshop was supported in part by the Committee of Science
and Technology of the Russian Republic, the Lebedev Physics Institute, and the University
of Maryland. This program was one of the scientific conferences held in accordance with the
cooperative agreement between the Lebedev Physics Institute and the University of Maryland.
The first meeting of this workshop in this series took place at the College Park Campus of the
University of Maryland in 1991.

The purpose of this Workshop was to study possible applications of squeezed states of light.
Specifically, the workshop was concerned with the following questions.

(1) What physics can we do with squeezed states?

(2) Are there squeezed states in other branches of physics?

(3) What are possible forms for the uncertainty relations?

The Workshop brought together many active researchers in squeezed states of light and those
who may find the concept of squeezed states useful in their research, particularly in under-
standing the uncertainty relations. There were many participants from the European countries
including of course Russia. There were also many from the United States.

The third meeting in this series will be held at the University of Maryland Baltimore County.
The principal organizers are R. H. Rubin and Y. H. Shih. We expect that the international
character of this Workshop series will be preserved and strengthened.
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INTRODUCTION

Squeezed states of light were predicted in the 1970’s. They were observed in laboratories
during the period 1985-1988. Indeed, the production of squeezed light is one of the landmarks
in the development of laser technologies. Efforts are being made to find new experiments using
this new laser technology. This new development encourages and enables us to study the forms
of uncertainty relations.

The physical basis of squeezed states of light is the uncertainty relation in Fock space whose
basic operation consists of creation and annihilation of photons. The uncertainty relation in
this case is that of the second quantization. One of the fundamental questions in physics has
been and still is how this uncertainty in second quantization is the same as or different from
the position and momentum uncertainty with which we are so familiar.

Let us consider a two—dimensional space with two orthogonal axes. The word ”squeeze”
means that one of the coordinate variables is contracted while the other is expanded in such a
way that their product remains unchanged. For Heisenberg’s uncertainty relation, we can in-
crease the uncertainty in position variable while decreasing that in the momentum variable while
keeping the value of uncertainty constant. Indeed, the squeeze transformation has been one of
the most important transformations in many branches of physics, including special relativity,
harmonic oscillators with time-dependent frequency, canonical transformations in classical me-
chanics, and Bogoliubov transformations in condensed matter physics, thermofield dynamics,
and symplectic transformations in mathematical physics.

Thus, the word ”squeezed state” can have two different meanings. In a narrow sense, the
word is applicable only to two-photon coherent states in quantum optics. There are many who
say that the potential for industrial applications of the squeezed states of light is enormous.
There are also many who say that the squeezed state in optics was only a fad and is no longer
an interesting subject. However, we should not make a hasty judgment on this new word,
because the squeezed state can have its second meaning.

The word squeeze can also have a broader implication. It does not have to be limited
to quantum optics. The point is that there are many squeeze transformations in different
branches of physics. Indeed, there were .and there are many who have been studying these
transformations without using the word squeeze. The squeezed state of light has made a very
important contribution to the physics world by giving us the word “squeeze” as one of the
fundamental transformationss in physics. This word may therefore lead to an entirely new
organization of physicists who are working in many different areas of physics including quantum
optics.

The Workshop was attended by many researchers in the squeezed states of light as well as
those who worked on related fields even before the squeezed state of light became one of the
important subjects in physics. This volume contains four chapters. The first chapter contains
the papers on the latest development in quantum optics. The second chapter consists of articles
dealing with the forms of uncertainty relations. The articles in Chapter 3 are on theoretical
developments based on the concept of squeeze transformations. It is important to note that
the time-dependent problem in quantum mechanics is intimately connected to the concept of
squeezed states in optics. The papers in Chapter 4 contains the papers dealing with time-
dependent problems in quantum mechanics and quantum optics.
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‘A PHASEONIUM MAGNETOMETER:
A NEW OPTICAL MAGNETOMETER BASED ON
INDEX ENHANCED MEDIA

Marlan O. Scully

Department of Physics, Tezas A & M University
College Station, Tezas 77843

Michael Fleischhauer, and Martin Graf

Sektion Physik, Universitat Munchen
W-8000 Munchen, Germany

Abstract

An optical magnetometer based on quantum coherence and interference ef-
fects in atoms is proposed whose sensitivity is potentially superior to the present
state-of-the-art devices. Optimum operation conditions are derived and a com-
parision to standard optical pumping magnetometers is made.

1 Optical Pumping Magnetometer

The detection of magnetic fields via optical pumping techniques was first discovered by
Franken and Colegrove in helium [1]. An atomic system with three lower magnetic sublevels
say, my = +1,0,—1 and one upper level, is driven by resonant unpolarized light. A
magnetic field, which for simplicity we take to be parallel to the propagation direction,
splits the energies by an amount haB, where a = 107 s~!/Gauss and B is the magnetic
field strength.

Due to optical pumping, the population of the m; = +1 states is driven into the
my = 0 level and the pump light will be transmitted through the otherwise absorbing gas.

Now, if there is a RF signal applied to the gas which is resonant to the sublevel
transition, the atoms will be driven back to the m; = £1 states and the gas will again
absorb the optical radiation. Thus by monitoring the transmitted pumping light while
varying the RF frequency one has a sensitive measure of the spacing of the magnetic
sublevels. That is, the pumping light will be "shut off’ when

PRECEDING PAGE BLANK NOT FILMEDR



wgp=aB (1)

This is summarized in Fig.1.

Wpe W
FIG.1. Optical Pumping Magnetometer Concept

The ultimate precision to which we can measure this frequency and the strength of
the magnetic field is determined by intensity fluctuations in the transmitted light beam,
i.e. fluctuations in the number m of observed photoelectrons. To obtain the resonance
frequency, one determines the position of the half maxima. The intensity fluctuations at
this point lead to an error -

Ow
A‘-"’error - la_m Am’ (2)

where 0m /8w is the slope of the transmission curve at the half maximum.

Assuming shot noise in the number of observed photoelectrons, i.e. Am = /m, and
100% detection efficiency, so that m = P;,t/hv, we obtain under optimum conditions for
the frequency error

hy
Pintm '

(3

AWerror = Tmag



Here P;, is the optical input power, v the frequency of the pump field, and ¢, is the
measurement time. Ymag is the width of the transmission line, which in the absence of
power broadening is the transverse decay rate v, of the RF transition. Equating the signal
frequency (1) to the error (3) we arrive at the minimum detectable change in the magnetic
field for the optically pumped magnetometer

. 7Ymag [ Ry
Bmln - a P'ntm * (4)

Increasing the power of the pump radiation obviously increases the sensitivity. However, as

P;,, grows the transmission line will get power broadened and yma4, Will eventually increase.
In order to optimize the parameters, we calculated the width of the transmission line by
solving the density matrix equations within a second order perturbation approach in the
RF field. We thereby consider the level configuration shown in Fig.2.

FIG.2. 4-level scheme for the optical pumping magnetometer. Since the
magnetic field is parallel to the propagation axis, the unpolarized pump field
drives the my = %1 lower levels to the m; = 0 upper state.

In the interaction picture we have the equations of motion for the populations



Pooby = V+Paa +1i (R pab, — c.c.) — i (Qrppbib, — -C.) 5 (5a)
) .Q'bpbo = Y0Paa +1 (Q;{pr.}.bo - C.C) -1 (Q'IIZprob_ - C'C') ’ (5b)
Po_b. = Y=Paa +1 (R pas. — c.) + i (Urppses. —c.c), (5¢)

for the RF polarizations

Poybo = —(IA +7e)Pbrbo — IRF (Pbyby — Poode) + 127 Pabos (6a)
Poos. = —(1 +7c)Poob_ — 1QRF (Pbobo — Pb_b_) — iPgpq, (6b)

and for the optical polarization

: r : : ; ;
Pabo = _Epabo — iQpppab_ — 1QRFPaby + 1205100 + 1205 b5, (7)

Here v4,7-, 70 are the longitudinal decay rates of the optical transitions, ' = v4 +v- +70,
Qrr and Q are the Rabi-frequencies of the RF and optical field, and A is the detuning of
the RF-frequency from the magnetic transition frequency. In the absence of the RF-field all
population is optically pumped into level by. Hence, in zeroth order the only non-vanishing

(0)

matrix element is p; 3 = 1, and the medium is totally transparent with respect to the

optical field. In first order of the RF-coupling, low-frequency coherences build up. Solving
Egs. (6) and (7) we find

) 1) Qrr(A + i)
pb+bo = pbob_ = 4‘9}:27 ? (8)
A? +92 + T -

where we have assumed Q%r = Qgrr. In second order of the RF-field, population in the
by ground levels is created and the optical field will be absorbed. Noting that pf,za) =0,
we find from Egs. (5a) and (5¢) the imaginary part of the a — by susceptibilities, which

determine the absorption of the pump field radiation

” 2N Q%p 2|02
v (e 200, o
Y "



As can be seen from this equation and Fig. 3, an increasing Rabi-frequency {2 leads to a
power broadened transmission line with width

4o\ '’"
Ymag = e (1 + I rl\ ) (10)
Y
-X"/x"(0) W (
- _15 ; é ?0
10 s, /7.

F1G.3. Normalized imaginary part of optical susceptibility as function of RF
detuning A. The Rabi-frequency of the pump field is (from top to bottom) 0.1,
0.5, 1,15 2 x ~.I/4.

For a sufficiently small input power, such that ¥,y = 7., the minimum detectable mag-
netic field, Eq. (4), decreases with increasing input power P;,. However, above a certain
value P, corresponding to the critical value of the optical Rabi-frequency

c __ 701-‘
Q0= /- (11)

B,,in attains a constant value



‘ 1 [~ /3X2
Bmin — aV . oxA’ (12)

where A is the pump laser cross section. For a measurement time of 1 s, A = 500 nm,
~e = 10% s71, and A = 1 cm?, the rhs of Eq. (12) is of order 107!° Gauss. The highest
sensitivity obtained experimentally so far with an optical pumping magnetometer is of the
order of 10~% Gauss [2].

2 Interferometric Measurements of Magnetic Level
Shifts

An alternative way of determining magnetic level shifts is to detect the change of the
index of refraction near an atomic resonance.

Let us consider a simple two-level atomic absorber. If we ignore the absorption for
the moment, the dispersion of such a medium near resonance is given by

X' 3 A
=S a1+ MN—
n l-i-2 + N7, (13)

where ) is the wavelength of the atomic transition, N the number density of atoms,
A = w,p — v is the detuning between the atomic transition frequency w,; and the probe
field frequency v. An applied magnetic field which shifts the atomic transition frequency
will thus lead to a change of the index of refraction

Anm~BNEE

(14)

A prdbe beam tré.hsmrittéd fhrough a sample of these atoms over a distance L will hence
acquire a phase shift due to the magnetic field

_2n 27 3,,,0B
Ad = /\AnL~ AANL ot (15)
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Detecting this phase shift by interferometric means, for instance in a Mach-Zehnder inter-
ferometer, thus gives a §ensitive measure for the magnetic level shift. The phase measure-
ment error is found from A¢,rrorAm & 1. Assuming again shot noise, i.e. Am = \/m and
equating the signal and error expressions, yields the minimum detectable magnetic field

v 1 hv

=ort .
Bumin =27 7N\ Bote

(16)

Naturally, however, such a gaseous medium will not be useful because of the large absorp-
tion as indicated in Fig.4.

FIG.4. Real (x') and imaginary part (x") of the susceptibility of a two level
atom, determining the index of refraction and the absorption.

This is the point where the idea of quantum interference in atomic systems comes
in. If the upper level a of an optical transition is driven by a strong driving field to an
auxiliary level ¢, the absorption from the ground state b is essentially cancelled [3], while
the index of refraction displays a large dispersion, due to quantum interference of different
absorption pathways.

11
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FIG.5. Left: A configuration in which strong driving field with Rabi-frequency
Q' on a-c transition generates transparency on the a-b transition. Right: corre-
sponding susceptibility spectrum.

3 Optical Magnetometer Based on Electromagneti-
cally Induced Transparency

Near a resonance of the coherent medium we have a large dispersion of the index of
refraction. A probe field propagating a distance L through the phaseonium medium will
acquire a phase shift

Apaig = 3 A*NL

pe? (n

due to the magnetic field. The induced transparency is not perfect due to collisional
dephasing of the c-b polarization (v.) and the amplitude of the transmitted field will be
reduced by a factor «

= 3 2 TYe ,
vn_—exp{—s—,\ LN|Q'|2} (18)

x is, however, close to unity for sufficiently strong driving fields.

12



Putting a phaseonium gas cell in one arm of a Mach-Zehnder interferometer as per
Fig.6, the signal phase shift (17) can be measured by a balanced detection of the intensities
at the two outputs. As shown in Ref.[4], the operation of such a phaseonium magnetometer
is again shot noise limited. Equating the signal and noise expressions one finds for the
minimum detectable magnetic field in a phaseonium magnetometer

g _lér 1 QP (14211 m 1V 19)
""TGININ 5 |2 | | Pata
) i
driving i
fiold == F——oqriiontnde—.
m, '-B-

0 L

test

tield /

FIG.6. Mach-Zehnder interferometer

Increasing the number density N or the interaction length L enhances the signal phase
shift. On the other hand the transmittivity x decreases. An optimum value is found when

4r 1 Q)2
1] 2 Ye. (20)

3 NLN ~

This gives for the minimum detectable field under optimum parameter conditions

1/2
Ye hv
Bmin = : [Pintm] (21)

13



which is identical to the expression found for the standard optical magnetometer for the
case of small input power. However, if in the optical pumping magnetometer the input
power exceeds a critical value determined by the critical Rabi-frequency (10), the sensitiv-
ity remains constant, whereas in the case of the phaseonium magnetometer much higher
sensitivities are possible as can be seen in Fig. 7. Here the Rabi-frequency of the probe
field, Q. is limited only by the condition of linearity

Q<. (22)

o]

10

A A a10a)

opt. pumping magnetometer
/

lE- --------------------
0.1 4 phaseonium magnetometer
T T 11Ty T T YY1 LIS ALLL T o1 T T 1 10V
0.01 0.1 1 10 100 1000
Pl.ll

FIG.7. Minimum detectable magnetic field for the optical pumping and
phaseonium magnetometers as functions of the input intensity in units of P},

To see the potentially enhanced sensitivity, let us consider a special numerical example.
Reasonable values are: v = 107 s~1, v, = 10* 571, || = 4, A = 500 nm, L = 10 cm,
tn. = 1s, Pim =1mW, a =107 s7!/gauss, N = 2 x 10'? cm™® (10~* torr at room
temperature). This gives a minimum detectable magnetic field strength of

Bnin — 107!2 Gauss

which is smaller by one or two orders of magnitude than that of existing magnetometers.
Thus, the phaseonium magnetometer potentially leads to much higher sensitivities than
existing state-of-the-art devices.

14
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, Abstract

A single mode cavity is deformed smoothly to change its electramagnetic eigenfrequency.
The system is modelled as a simple harmonic oscillator with varying period. The Wigner
function of the problem is obtained exactly starting with a squeesed initial state. The result
_ is evaluated for a linear change of the cavity length. The approach to the adiabatic limit
is investigated. The maximum squeezing is found to occur for smooth change lasting only
a fraction of the oscillational period. However, only a factor of two improvement over the
adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully

within the model.

1 Introduction

If the length of an electromagnetic cavity is changed, there are two meanings to the concept of
adiabaticity. Firstly, the movement may be so slow that the cavity eigenfrequency varies only
little during one oscillational period; this is the adiabatic limit proper. However, the process
of establishing the correct oscillational frequency requires that the radiation has time for many
round trips in the cavity. The cavity deformation may enter another regime, the eigenfrequency
does not change appreciably over a few round trips, but it may change significantly over a single
oscillational period. In this limit, we still expect the cavity mode to be described by a simple
harmonic oscillator, but its frequency changes smoothly with time. If the movement is rapid
compared with the cavity round trip time, the complete Maxwell equations need to be used in
the calculation. Solving an eigenvalue problem with a moving boundary is a tricky problem; I
do not want to discuss this situation here

The theory of a harmonic oscillator with variable frequency is a paradigmatic problem in physics.
Classically it appears as a case of parametric driving, and quantum mechanically it is connected
to the history of adiabatic invariants. A classical discussion is found in van Kampen (1] and of
the many quantum treatments | wish to mention only Dykhne[2], Popov and Perelomov (3] and
Man’ko and his collaborators [4]-[5]. Because the Heisenberg equations of motion agree with the
classical ones, the quantum solution can be reduced completely to solving the classical problem;
this was recently shown in an elegant way by Lo [6]. The same conclusion was formulated for
the Wigner function by the present author [7] albeit in a different physical context. Squeezing
introduced by time evolution has been discussed for other physical situations in Refs. [8]-{10].
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2 The general problem and its solution

In a cavity of length L we assume the Hamiltonian for one radiation mode to be of the form
= L2 3(4)q2
H =3 (¢ + 2*(0)¢) (1)
where the time dependent frequency is given by
en
() = NG f(1) s Do =1 (2)
0
L, is the initial length of the cavity. If we introduce the scaled variables
f=not;ﬂ'=—5;o', (3)

we find the Heisenberg equations of motion using the canonical commutation relations between
pandg
g=n;*=-f(r)q, (4)

where the dot denotes derivation with respect to 7. Integrating these equations gives the solution
for the Heisenberg variables as has been discussed in the literature.

In the Schrodinger picture we obtain the equation of motion for the Wigner function in the form

—&r—+1l'?q——f(f)q3"—=0 . (5)

Its characteristics are the very Egs. (4), but now they are classical relations between c-numbers.
In order to solve (5) we proceed as in Ref. (7] and define the fundamental system of solutions
w; and w; such that

wy(0) = w3(0) = 1
(6)
w,(0) = wy(0) =0 .

Their Wronskian is a constant of the motion equalling unity. We assume the mode in the cavity
to initially be in the squeezed state having the Wigner function

Y ] 2
(q“’zbzq) _ %(”0 - *)2 ] (-9)

WO(QG)TO) = Cexp |-

Expressing the general solution of (4) in terms of the solutions (6)
g = go w1(7) + mows(r)
(8)

7 = ¢ = gowr(T) + mow3(7)
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and inserting go and =, from (8) into Eq. (7) we obtain the required solution of (5)

(th2g — war — §)?]

3h

W(g,m,7) = Cexp|-

(9)
_fi - #* ;

X exp b,(wur g — ) .

Calculating the marginal distribution for the variable ¢ we obtain
W'(Qvf) = /d"l’W(q, 7T)

_ _(g—-g(n))?
= Cexp Boi(r) | - (10)
The Wigner function thus progresses along the classical trajectory according to
9(r) = wi(7)q + wa(7)% (11)
and its spreading is given by
2
o*(r) = wi(r)e? + P (12)

At the initial time the squeezing is given by s?, but at the final time, after the change of the
cavity length, the result is determined by the values of w; and w, at the end of the interaction.
It is generally agreed, that in the adiabatic limit proper, the change of the squeezing must be
small, see e.g. Graham [11]. In the next Section we will investigate a simple model, where we
can see how the situation is changed if the motion is smooth, but not necessarily adiabatic with
respect to the oscillational frequency.

3 Linear change of cavity length

We now asume that the length of the cavity is changed linearly, viz
L(t)= Lo+ At = Lo + At/ . (13)

The characteristic time scale of the cavity cfxa.nge is given by
Lo Q
to = — = 14
ol = 31 = iacey .

which goes to infinity for properly adiabatic motion. Negative A means that the cavity is made
to contract.

With these definitions the function f(¢) becomes

fit)e b o 1 (15)
(Lo+ M) (1 +(t/t))
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Relations (4) give the equation
§+f(r)e=0, (16)

which has to be solved with the initial conditions (6). For the given function (15), this becomes
a Fuchsian problem with two singularities and the solution can be obtained in a straightforward

way. 1
We introduce the variables

A = (fmnyx -

(17)
p o b M _Lo-L
to flote Lo Lo '
With these definitions the fundamental solutions (6) are given by the expressions
wi(r) = VITT{cos[Alog(1+T)) - Elzlin [Alog(1 + 7))}
(18)

wy(r) = 9-? T+ Tain[Alog(1 + T)] -

Regarding T as a function of 7, we can easily see that these functions constitute a solution to
the problem. Exciting the cavity state by a classical source, we will find it in a coherent state
with s = 1 in (7). The width as a function of time becomes

(1) = wi(r) + wi(7) . (19)

Before we proceed to consider the consequences of the exact expression (18) for the width (19),
we look at the adiabatic limit proper, i.e. A = 0. Then we find

Alog(1+r)=%ﬁ=not

(20)
Qfﬁ =1.
With these results, the equations (18) go over into
wi(r) = VIFT cosfot
(21)

w,(-r) = Vv1+ T. nnﬂot .
Remembering that Eq. (17) implies

\/1+TT=1/LT(':)- = /au/0() (22)
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we find that the results (21) follow from a simple application of the WKB-method to the equation
(16). Inserting these results into the width (19) we find

2 - c——
o'(t) = n(t) (23)
As we cannot hope to change the oscillational frequency by a large fraction, we reach the con-
clusion that no large amount of squeezing can be achieved in the adiabatic regime proper. This
agrees with conclusions arrived at in earlier treatments, in particular the adiabatic invariance
of f1o? has been found, see e.g. Ref. [11].

Another peculiarity of the result (23) is that no trace of the oscillational behaviour survives. If
the parameter A is not too large, the situation changes. Because of the second term in w, of
Eq. (18), oscillations appear in the width. To see how much squeesing they can achieve, we
write the solutions (18) in the form

w, = V14T [coup - unv]
(24)
w, = ﬂoto 1+ Tsiny .

Here ¢ is the argument of the trigonometnc functions in Eqs. (18). The width (19) then
becomes

olt) = 0 [1 37020 + 2;, sin cp] (25)

For A = oo this reproduces (23). The expression has a minimum for each fixed value of the
parameter A4, but for large A, this approaches the adiabatic limiting value (23). For example
A = 1 gives the minimum value 0.69 for the expression in square brackets in (25). This occurs
at the time when ¢ = 0.55.

The best possible values for the squeesing are obtained with a very small A, in which case the
minimum occurs for early times, ¢ =~ 0. The expression (25) can then be written

@ N, Qo
£ - 1) (26)

V,(t)= -29(1)

s [1+

which is not a large improvement over (23). The minimum also occurs for a small parameter 4,
in which case we rapidly approach the breakdown of the validity of the theory. For very small
A, the expression (17) gives
1
loto =~ 3 (27)

which is not in the adiabatic regime proper. The minimum then occurs at times when

1
prflotx A< Motem . (28)
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Thus we have to change the cavity eigenfrequency in a time less than the oscillation period. This
cannot obviously be achieved by mechanical means, and even using some electronic switching to
change the effective path length through the cavity, we can attempted this only in the microwave
region. However, as the advantage of the method is expected to be small, there seems to be
little motivation to solve the technical problems involved.

4 Discussion

We have solved the problem of the deformation of an intracavity field during a smooth change
of the cavity eigenfrequency. Even if we are allowed to depart from the strict adiabatic limit,
the expected squeezing remains modest. The calculation cannot be taken to the sudden limit,
because then the simple harmonic oscillator description is no longer valid. The complete Maxwell
equations must be treated in that case. In this aspect our problem differs from the corresponding
Schrodinger equation [12]-[14] where both the sudden and the adiabatic limit can be handled in

the same way.
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Abstract
The quantum theory of coherent radiation 'frequency
doubling in crystals with quadratic and cubic optical
nonlinearities is developed. The possibility to produce the
gquadrature - squeezed state of the second harmonic (SH) field
is shown,the nonclassical SH states arising due to self-action
effect.

1. Introduction

The quantum theory of the second and higher harmonic
generation has been developed in a number of works (see, for
instance, Refs. 1-3) in which the possibility of obtaining the
squeszed states of eslectromagnetic field and photon
antibunching has been analyzed. It has been established that
the frequency doubling is accompanied with the generation of
the squeezed states at the fundamental frequency whereas the
second harmonic (SH) field turns out to be in the coherent
state. At the same time the frequency doubling of the squeezed
light, as it was shown in Ref. 1, causes a decrease in
squeezing. From the practical point of view, the methods based
on the quadratic and cubic medium nonlinearities with respect
to the electric field are of considerable interest. It is
known‘ that in the centrosymmetric nonlinear medium, 1i.e. the
Kerr medium, the quadrature — squeezed field can be produced
due to the self-action effect. In the media mentioned above the
four frequency wave processes always occur in the presence of
self-action. In the media with the induced quadratic optical
susceptibility the three frequency wave interactions can also
occur under the evident influence of self-action.
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In the 'present paper the quantum theory of the SH
generation (SHG) in the presence of self-action is
developed. In the framework of the classical approach the
problem under consideration has been solved in Refs. 5 and 6.
The basic equations of the process which are of interest to us
are presented in Sec. 2. In the Sec. 3 SHG is analyzed for the
case of low efficiency of the fundamental radiation conversion
into the SH: however, we do not take into account here the SH
influence on the effective refractive index of the medium. The
possibility of the SH quadrature - squeezed state generation is
shown in Sec. 4.

2. Basic equations

Interaction of the fundamental wave of frequency W and
gecond harmonic wave of frequency 2W in an optical medium with
nonlinear susceptibilities of the second X  and third X'
orders is described by the Hamiltonian:

H - hwsat + ZbOBD® + B

(1)

-~

H = HBb*a® + ba*’) +47a*®a® + p*B° + 2a*

ab*p) .
where ;+(;) and 5+(B) are photon creation (annihilation)
operators of the fundamental wave and SH which obey the
commutation relations:

fa,a*1 =1, [b.p*) = 1, (2a.b)
the nonlinear parameter f is proportional to Xa). and
parameter 7 to xwt The operator evolution is given by the

Heisenberg equations:

8a .t- .- wynn
— --i2Ba*b - i7a*a® - i27b'ba , (32)
z
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o --ifa® - i27a*ab - iTp*D° (3b)
z

where z is the length of the medium in the direction of wave

propagation.

Let us discuss the terms on the right — hand side of Egs.
(3a) and (3b). The first terms are associated with the process
of degenerated three—frequency interaction (the first term in
Eq. (3b) describes the SH generation (SHG), whereas in Eq. (3a)
the first term takes account of parametric interaction). The
second terms in Egs.(3a) and (3b) deal with the self-action
and cross—action of the radiation of frequency W. Finally the
third terms in Eqe. (3a) and (3b) take into account the
cross—-action and self-action at frequency 20.

Assuming that at the input of the nonlinear medium the
fundamental wave and second harmonic are in the coherent and
vacuum states respectively, we have

-~

a(z=0) = a, ., a,!@> = G 0> ;
(4)
b(z=0) = b, . byi0> =0

3. SH generation in the fixed photon number approximation

The analysis given below implies the low efficiency of the
conversion of the fundamental radiation into the SH. Therefore,
we can neglect the last terms in Eqs. (3a) and (3b). We thus
take into account the refractive index variation due to the
cubic nonlinearity caused only by the intensive fundamental
wave. The SHG process is analyzed in the fixed photon number
approximation. Using this approximation one neglects the photon
number variation of the fundamental wave, i.e. we suppose that
the operator of the photon number &(z)-;+(z);(z) remains
uqchanged‘dgring the process of the nonlinear interaction

(n(z)-no-a;ao). It should be noted that this approximation is
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in fact the quantum analog of the fixed intensity approximation
(sees Ref. 7).

Let ug introduce the new operators ;(z) and %(z) for the
fundamental radiation and SH respectively:

) iTzn_ . ) 2iTzn. . |
c(z) = e o a(z) . f(z) = o ° b(z. (5a,b)

These operators also obey the commutat:on relations similar to
Eq.(2) and the initial conditions similar to Eq.(4). The
evolution of the new operators is given by the equations:

dc (z) iz .
- -i2f e ctizmfz) . (6a)
dz = ' -
af (z) ~ivz .
= -if e c(z) . (6b)
dz

By differentiating Eq.(6b) and using Eq.(6a5. we obtain the
equation for the SH operator f(z)

a* 1
— £(z) +af(n, +—) f(z) =0 7)
dz : 2
with the initial conditions
. - df, -z
f(z=0) = b, , —, = -ifa,. (8)
dz :56

Below we make use of the operator f(z) e x panded into the

Taylor series to within X  (X=Pz):
2-

o}

- df
f(z) = £, + —
° dz

; z2 + (9)

_%TO x=0

1
z + -
2

D.

Returning to the primary operators of the fundamental wave and
SH (a and b respectively) we obtain the expression:

) -2iTzn. . W 1 ) .1
b(z) = e ° (b, - iPzay - - Bz ay - 2(Bz)*(n,+ =)b,}.(10)
2 2
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The evolution of the SH field operator depends on the value of
the nonlinear parameters Pz and 7z.

By averaging over initial states of the fields, we obtain
the mean value for the operator b (10)

- 1 . 21(9,-D)

<b(z)> = -(iPz + — Prz2ria:® e a1
2

Here m-yz:ab:’ is the nonlinear phase addition arising due to
the self-action and ¢g-arg &, is the fundamental wave
phase. In the framework of the considered approximation the
operators 5+ and 5 satisfy the commutation relation (2b).

Let us turn to the analysis of the SH field photon
statistics. Calculations of the Fano factor F-O:/<N> (where
N-b+(z)b(z)) result in the following expression:

F(z) = 1 + (B2)" (aiq,:* + 2) . - (12)

Thus, as one can see from Eq.(12)., the photon statistics of the
SH field becomes super-Poissonian.

4. Quadrature components of the SH field

In this section we dwell upon the fluctuations of the SH
duadrature components described by the operators:
‘1. 1

X(z) = — {b(z) + bt (z)}. Y(z) = — {b(z) - bY(2)}.(13)
2 21

The quadrature components (13) are registered by the balanced
homodyne detection (see Figure). The SH field being under
investigation is mixed with the coherent one at the same
frequency, generated in the absence of the self-action and
cross-action effects. The mixed radiation of the both reference
coherent wave and that of the analyzed SH is fed to the
balanced detector input. Thus, we have the possibility to
record one of the SH quadrature components for the field under

consideration.
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According to Eqs.(10) and (13) the mean values of the
quadrature components (13) are equal to

A 1
<X(z)> = Bz!0,:" sin(2(¢o-0)] - - Bzl cos(2(P,-T)].
2
(14)

] 1
<Y(z)> = -Bzia, i cos(2(P,-T)1 - - P20 sin(2(P,-T)]
2

and determined by the value of the nonlinear parameter Bz and
nonlinear phase addition 0.

Calculations of the variances of the SH quadrature
component yeild in the expressions:

g 1
0.2 -— 4 o_ {(_(67)22‘ _Z(ﬁz)z) (cos[4(¢°~m)—2721"008[4(¢o—m) 1)
2

. (15)
* 26°12° (8in(4($y-0)-27z1-sin(4(P,-T) 1)),

where the upper sign is for the i quadrature and the lower is
for Y. Let us transform Eq.(15) by retaining only the terms of
order (ﬁz)2 nd smaller. As a result we have to within (ﬁz)z

1
. 2
o= o K® sinld4(@,-0)1 + 2(Bzl)® costa(d,-0)1.
(16)
2 1 2
0= -+ K0 sin(a@,-0)] - 2(Bz0)* cos(4(d -0)].
Y 4 o o
where the coefficient Kz-(ﬁ:a,o:z)2 characterizes the

efficiency of the SH conversion. It follows from Eq.(16) that
the variances are the oscillatory functions of the parameter 1)
due to the self-action. The oscillation amplitude depends on
the SHG efficiency and the value of the phase . It is evident
that the variations of the variances have the opposite
tendency. The analysis of Eg.(16) is more clear provided the
initial radiation phase ¢, is optimized:
1 1

¢, =0 + — arg(
4 27z

The extremal values of the variances Eq.(16) are equal to:

)y 2 0, (17)

31



1
o --+KD. (18)
4 4

One can see from Eq.(18) that it is possible to obtain the
quadrature - squeezed states of SH field. In this case the
predominant role is played by the self-action effect. In the
absence of the self-action (U¥=0) the SH field is in the
coherent state (05=03=1/4). It is obvious from Eq.(18) that the
degree of squeezing can be arbitrary high and is determined by
the efficiency of the SH conversion K: and phase P .

It follows from the calculation of the uncertainty
relation for the SH quadrature components that we have the
ideal quadrature squeezing to within (ﬁz)z.

6. Conclusions

It follows from the analysis given above that SH
quadrature - squeezed states are produced by frequency doubling
in the presence of the self-action phenomenon which plays
a predominant role. The degree of squeezing is determined by
both the SHG efficiency and nonlinear phase induced by
self-action. The nonlinear medium where the considered process
is likely to occur can be realized in noncentrosymmetric
nonlinear crystal (for example ZnSe) or centrosymmetric medium
in a static electric field. It seems to be promising to use
optical fibers, in which the SHG efficiency can reach 1-5%
(Ref.7).

As it was mentioned above the possibility to produce the
squeezed states of the fundamental radiation isusually studied
in SHG process occurring in the absence of the self-action.
Outside the framework of the fixed photon number approximation
we also considered the fundamental field statistics, taking
into account the self-action effect. We have found that the
degree of the fundamental radiation squeezing depends on the
SHG efficiency and nonlinear phase as in the case of the second

harmonic field.
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Abstract

The redistribution of intrinsic quantum noise in the quadratures of the field generated
in a sub-threshold degenerate optical parametric oscillator exhibits interesting dependences
on the individual output mirror transmittances, when they are included exactly. We present
here a physical picture of this problem, based on mirror boundary conditions, which is
valid for arbitrary transmittances and so applies uniformly to all values of the cavity Q
factor representing in the opposite extremes perfect oscillator and amplifier configurations.
Beginning with a classical second-harmonic pump, we shall generalize our analysis to apply
to finite amplitude and phase fluctuations of the pump.

1 Introduction

A degenerate optical parametric oscillator (DOPO) has long been considered a nearly ideal squeez-
ing device when operated just below threshold. The quantum fluctuations of the generated
sub-harmonic field are rather immune to spontaneous emission since the two-photon transition
governing the parametric down-conversion process sees no resonant intermediate levels.

Nearly all prior work dealing with this problem [1,2,3] has been limited to the situation in
which the DOPO cavity is nearly perfect. In a general approach [4,5] developed recently by the
author and Abbott, which is based on the exact treatment of mirror boundary conditions, it
has become possible to discuss cavity problems in quantum optics for the entire range of cavity
transmissions possible. In the present DOPO context, this approach thus permits the extreme
limits of a single-pass amplifier (cavity transmission —100%) and of a nearly perfect DOPO cavity
(cavity transmission —0%), and all intermediate-Q oscillator configurations to be treated on the
same footing. By employing this viewpoint (which may be viewed as a generalization of Collett and
Gardiner’s approach [2]), we also develop a physically insightful picture of the general squeezing
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problem, one which emphasizes the correlations of the input, output, and intracavity fields that
govern the relationship of intracavity and output field fluctuations. Any reference to modes is
altogether avoided here.

After treating the DOPO problem with a perfectly monochromatic pump, we shall model real-
istic experiments in which the pump field has finite amplitude and phase fluctuations. Although
any amplitude noise of the pump has a relatively minor impact on the squeezing of the sub-
harmonic signal field, pump phase diffusion even when it is tracked can cause a severe degradation
of that squeezing. More detailed discussions of this problem will appear elsewhere [6].

2 Mathematical Formalism

A description of the problem at hand that covers the whole gamut of cavity transmission factors
is necessarily multimode in character. We avoid all reference to cavity modes by writing the
fully quantized signal field inside the cavity in terms of its rightward (positive—z) and leftward
(negative—z) propagating parts. For the pasitive-frequency part, this decomposition is written in
the Heisenberg picture (HP) as

EW (z,8) = (e4(z2,1) €™ + e_ (2,t) e7%) e~ "ot (1)
in which the operators e4(z,t) have expectation values that are assumed slowly varying in space
and time on the scale of the central wavelength 2x/ko and period 27 /S.

The parametric interaction of E(+)(z,t) with an intense quasimonochromatic is described via

the interaction Hamiltonian (also written in HP) in a cavity of length £ filled with the parametric
medium:

¢
Hpopo = % x? e /o [51 (2,t) + e’.(z,t)] dz + Hermitian Conjugate (2)

The complex pump amplitude epymp is at most slowly varying in time. The constants A and x®
are the cross-sectional area of the cavity and nonlinear susceptibility, respectively. The notation
used is the same as in Ref. [7]. We may write the equations of propagation for e4 (z,t) in the
slowly-varying envelope approximation as

o 18 ik
(E + za) e*(z,t) = ii‘gp* (Z,t), (3)

in which the nonlinear polarization waves pYX(z,t) driving the parametric interaction are given
by a functional differentiation of the quadratic interaction Hamiltonian (2):
PgL(zv t) = -%(6/63tt(z’ t?') H’DOPO (4)

Thus, on combining (3) and (4), we have the following generalization of the single-mode equations
describing the parametric amplification process:

i)
(-(;—92- + %a) ex(z,t) = 2q cL(z,t), (5)
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Fig. 1. The DOPO Cavity with End Mirrors at z =0 and z = £.

To complete the formalism, we supplement Eq. (5) with boundary connections of the intra-
cavity e4(z,t) fields with the input vacuum fields. These connections are

es(0,t) = —fe_(0,t) + fe4(0,); (6)
e-(Lt) = —Fes(l,t) +Ter(L, 1),

in which e}* are the two traveling pieces of the vacuum field entering the cavity through its
mirrors at z = 0 and z = £ with inside-to-outside reflection and transmission coefficients (-, t)
and (-, 1) respectively (see Fig. 1).

3 The Parametric Amplifier Problem

Without the cavity mirrors, the oscillator reduces to the amplifier configuration in which the two
traveling parts e, and e_ are not coupled to each other. We may therefore concentrate on only
one of them, say the e, —field.

Furthermore, for simplicity, we shall assume in this section that the pump has no amplitude
and phase randomness, so that it is strictly monochromatic. For this case, one may assume without
any loss of generality that g is real and positive, for any constant nonzero phase ¢, of ¢ may be
scaled out by redefining e, (z,t) to carry a constant phase factor exp (i¢,/2):

es(2,1) = ep(z,t) 42, (7)

without altering the physics.
By adding to Eq. (5) and by subtracting from it its ‘Hermitian conjugate, one obtains the
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following pair of uncoupled equations for the quadratures of e,:

d
(& +12) Xalort) = eXalerth (5"’- + 120 = —ev), ®)

where X,(z,t) = } (e.,,(z,t) + ef,,(z,t)) 1Ye(zt) = & (c.,.(z,t) - ef,,(z,t)) are the in-phase and
7/2 out-of-phase quadratures. The solution of Eqs. (8) is straightforward in terms of the retarded
time variable, r =t - z/¢:

: X+(Z,t) = X+ (O,t - z/c) ¥ Y..,(Z,t) = Y+ (O’t = z/c) e (9)

which represents a phase-sensitive amplification process characteristic of the parametric interac-
tion. These solutions are entirely equivalent to the following time-evolution equations -

Xi(z,t) = Xo(z — a2,0)e*; Yo(2,t) =Y (z - ct,0)e™. (10)

The linear relationships of Eqs. (9) or (10) indicate that both the expectation value and fluctu-
ations about it of the X, —quadrature (Y, —quadrature) of the signal field amplify (attenuate) by
the same factor. This statement, valid both classically and quantum-mechanically, clearly implies
that any noise initially present in the signal is stretched along the X-quadrature and shrinks along
the Y-quadrature, as shown in Fig. 2. It is in this way that quadrature squeezing comes about in
a parametric amplifier.

4 The Parametric Oscillator Problem

Our treatment of the parametric oscillator builds upon the simple amplifier analysis presented in
Sec. 3 by limiting z to lie between 0 and ¢ and adding mirrors at z = 0 and at z = £, which serve
to connect e, and e. and the input vacuum fields via (6). As in Sec. 3, we restrict our analysis
here to a perfectly monochromatic pump wave for which Eqs. (9) describe the interaction of the
e, wave with the medium. Similar relations may be written down for the quadratures of the e_
-field (integrated backwards from z = ¢):

X_(z,t)= X_(&t— (€ - z)/c)et-"); a
Yo(z,t) = Y_(4,t = (£ - z)/c)e~(t=2)

Since we are ultimately interested in calculating the quadrature squeezing of the intracavity
field es(z,t), we concentrate here onwards on the quantum fluctuations alone of the various
quadratures. We first consider what the implications of the boundary connection relations (6)
are for the fluctuations. Since (7,%) and (#,1') are all real, these relations are formally the same
as those obeyed by any particular quadrature of e; and ei* fields, including their X— and Y —
quadratures separately. Furthermore, the two fields (or their quadratures) on the right-hand side
(RHS) of each equation in (6) are uncorrelated at any t. To see this, we note, for example, that
the e%¢(0,t) field entering the z = 0 mirror contributes to the e2**(¢,t') field only after a time
t' —t = 2¢/c during which the former ficld makes a full round trip through the cavity. Thus,
e-(0,t) is correlated with €4*¢(0,t — 2¢/c) which is not correlated with e%*¢(0,¢), since the vacuum
field fluctuations are essentially é-correlated in time. In view of this lack of correlation, we may
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Fig. 2. The Parametric Amplification Process. The X —quadrature is amplified by
a given factor (taken to be 2 here) while the Y —quadrature is attenuated by the same
factor.

write for the quantum-mechanicé.l variance of, say, the Y —quadrature of fields at the mirrors in
terms of the power reflection and transmission coefficients (R, T) and (R',T') (with R = 72, etc.)

(AY,(0,))) = R(AY.(0,1)%) + T (AY<(0,0)?);
(AY_(6,1)Y) = R (AY,(6,0)7) + T (AY¥(8, 1)),

while setting z = £ in Eqs. (9) and z = 0 in Eqgs. (11) yields for the propagation of variances
through the medium

(12)

(AY4(,1)?) = (AY,(0,t = /c)?) e (AY_(0,8)?) = (AY_(L,t=¢/c)?) ™. (13)

With the aid of Eqs. (12) and (13), we may express the retarded propagation of the Y, —variance
at z = 0 in one complete round trip as

(AY4(0,0))) = R(AY_(L,t - ¢/c)?) 72 4+ T (AY*(0,1)%)
= e MR ([R(AY,(0,t = 4/c)) + T (AY2(L,t — t/c)?)]
+T (AY}*2(0,t)?) (14)
= RRe(AY,(0,t - 2/c)?) + T{BY*(0,1)?)
+RT'e% (AY (¢, — ¢/c)?).
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t-—h— PROPAGATE FORWARDS - }

Fig. 3. Round Trip Evolution of Fields and Their Variances.

The foregoing sequence of mathematical steps in arriving at the round trip propagation of variances
is shown diagrammatically in Fig. 3 to bring out the underlying physical picture.

In steady state, the quantum statistical propertles of the field do not change from one round
trip to the next. In this long-time limit, suppressing the time entry of each variance in Eq. (14),
we get

AY"“ 0 2 RT' -39t Aywc ¢ 2
(AY*(0)2> [ < ( )(l>jRR' -m)( 9 >] (15)

a result that is uniformly valid for all values of (R, T) and (R’, T') pairs (with the obvious energy-
conservation constraints, R+ T = R'+ T’ = 1). It is also worth noting that in the derivation
of (15), the only property of the input fields used was their white-noise (§-correlated) character.
Thus, (15) applies not just to vacuum-field inputs, but to arbitrary white-noise input fields.

In the good-cavity limit, R, R’ =~ 1,qf ~ 0, we recover the result of Collett and Gardiner
generalized to allow for arbitrary white-noise input fields at the two mirrors:

T (AYy(0)?) + T (AY2<(ef)
(T +77) + 4q¢

For vacuum-field inputs as explicitly indicated in Eq. (15), since the two input fields are statisti-
cally identical (except for their direction of propagation), we may write more simply

(16)

(AY,(0) =

(T + RT"e")

- 17
(1 - RR’C-“l) NUCC’ ( )

(aY,(0)7) =

where
Nyee = (AY24(0)?) = (AY*(0)?).
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Note that the calculation of the variance (AX,(0)?) of the X —quadrature of the intracavity is
entirely analogous and is given by Eq. (17) provided g is replaced by —¢q everywhere.

The degree of quadrature squeezing is the ratio (AY,(0)?) /Ny which is generally the factor
by which two input fields with the same quadrature variance, but not necessarily vacuum fields, get
squeezed on entering the cavity. Detailed discussions of this quantity in both textual and graphical
forms have been presented elsewhere, where its generalization to include arbitrary relative phase
between the two traveling components of the monochromatic pump has also been derived (5,6].

Having discussed the intracavity field, we now present the noise characteristics of the output
field. Like the former field, the latter field is strongly correlated with the input fields as well.
However, unlike the former, the output field quadratures can be easily subjected to a spectral
analysis by choosing a sufficiently narrowband local oscillator field and integrating long enough in
a balanced homodyne setup as was done in the original experiments [8]. We shall see that it is in
this spectral sense that the output field exhibits a very high degree of squeezing.

The boundary connection of the output is similar to Eqs. (6). For example, the leftward-
traveling output field at the z = 0 mirror is a linear superposition of the transmitted part of e_(0, )
and the reflected part of %*¢(0,t). So any quadrature of the output field, say its Y_—quadrature,
obeys the boundary connection formula

Your(0,t) = £Y_(0,) + FY*(0,¢). (18)

However, unlike the intracavity field, we must know the full time dependence of Y,.:(0,t), not just
of its variance, before it can be spectrally analyzed. Equivalently, as (18) shows, we must know
how Y_(0,¢) evolves in time. But, that is easy to write down over a complete round trip since we
know via Eqs. (9) and (11) how the intracavity field e; interacts with the active medium in a
single pass through it, while Eqs. (6) tell us how the input fields ef*° leak into the cavity at the
z =0 and z = £ mirrors. The round trip evolution of Y_(0,¢) turns out to be

Y_(0,t) = FFe~2Y_(0,t - 2/c)— {Fe~HlY¢(0,1 — 2¢/c)
+ tetYrec(L,t —¢/c),

which could also have been written down directly based on physical arguments presented below.

I Y_(0,t — 2£/c) is the Y-quadrature of the cavity field just before it is incident on the z =0
mirror from the right then after that mirror reflection a fraction if it is reflected while a fraction
f of the input field Y°°(0,¢ — 2¢/c) is transmitted. The two waves propagate rightward through
the medium with their Y —quadratures attenuated by factor e~%. They are then reflected at the
mirror at z = { by factor —# while a fraction # of the second input Y**¢(0,t —¢/c) is added to the
circulating wave. The net field then propagates a distance ¢ leftward through the active medium,
with its Y-quadrature attenuated further by e~% as a result, to become the net field, given by the
left-hand side of Eq. (19), a time ¢/c later.

A Fourier analysis of Eq. (19) is straightforward. We shall focus only on the central (zero-
detuning) frequency component since it has the largest noise reduction. Denoting the Fourier
transform of a function f(t) by f(éw), we see that for 6w = 0, Eq. (19) yields

(19)

¥.(0,0) [1 - ##e=¢| = —if'e~2¥1(0,0)
+ile=9tyree(L,0),
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while Eq. (18) yields
Yone(0,0) = £¥.(0,0) + F¥**(0,0).

By eliminating Y_(0,0) between these two relations and using the energy-conservation relation
#2 4+ {2 = 1, one may easily show that

(7 — =) ¥2<(0,0) + Hle~*¥2(¢,0)

Youl(0,0) = =) '

(20)

whose variance is related to the spectral variance of (uncorrelated) input-field quadratures. If we
assume that the input fields have the same spectral quadrature variance at a given frequency, such
as is surely true for vacuum-field inputs then the spectral squeezing of the output field at zero
detuning is by the factor

(i‘ - F’e""‘)2 + 3t e~ %t
(1 - Fie-nt)’

Just as for the cavity field, the ratio <A5(m(0,0)’> / (AJ.( vee(0, 0)’> for the X-quadrature is given

by replacing ¢ by —q everywhere in relation (21).

It is worth noting that just below threshold ##'e?‘ — 1, the X-quadrature of the output
field at the z = 0 mirror has infinite variance in its central frequency component, while the
corresponding Y-quadrature spectral component has a finite variance that depends on how large
the transmission T of the other mirror is. In particular, for 7' = 0 regardless of the value of R
(or of T), the output Y-quadrature has zero spectral variance at the line center. This is a very
surprising result, implying as it does that even in a very low -Q but single-ended cavity the output
field is perfectly squeezed in the spectral sense, if the parametric gain is high enough to drive the
oscillator to its oscillation threshold. A more complete discussion of the output field, including
the bandwidth of the squeezing spectrum, may be found in Ref. [6].

SE0) = (AT,u(0,0)) / (A¥7*(0,0)) = (21)

5 Squeezing in the Presence of Pump Noise

In a real experiment, pump noise is inevitable. Typically, the pump field has both amplitude and
phase noise that can be described well in classical terms alone. For example, the pump amplitude
may have a small fluctuating piece, described in Eq. (5) via a time dependent g,

q(t) = g0 + 8q(2), (22)

in which 8q(t) is an Ornstein-Uhlenbeck Gaussian process with zero mean and an exponentially
decaying two-time correlation

(8q(t) Sq(t')) = aple=TH=T". (23)

The pump phase noise, on the other hand, is ultimately limited by phase diffusion which is Yvell
described by a classical Wiener-Levy Gaussian random process with zero mean value for the time
derivative of the diffusing phase, §¢(t), and its two-time correlations:
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(66) = 0; (89(t) 8ut")) = 2Dé(t - ¢'). (24)

The constants 2I' and 2D are the amplitude and phase-noise contributions to the total pump
linewidth.

Since detailed discussions of this problem have been presented elsewhere [6], we shall restrict

our derivations here to its relatively simple but physically revealing aspects. To begin with, we

shall take the white-noise limit, I' — o0, for the amplitude noise. In more precise terms, this is
the limit in which I'¢/c > 1.

Since ¢ in Eqs. (5) and (8) is time dependent, the exponentials in Eqs. (9) and (11) have
integrals in their exponents. For example, in Eq. (9b) one must replace

e c-wz-f; Sq(t—2'fc)ds’

for a given statistical realization of §¢g. This means that the Y —quadrature variance is down by
the factor

e~ Wol <e-2 L‘ 6q(t-x/c)dx> = e—29t+4a0lc

in every single pass either leftward or rightward between the two mirrors. We used the familiar
result that for a Gaussian random variable z,

(e*) = el eh(as?) (25)
and the fact that when I'{/c > 1,

(69(2) 6q(t')) = 2a06(t - t'), (26)

to obtain the preceding factor.

A recognition of the extra factor e**% by which the Y —quadrature variance is altered when
the pump amplitude has a fluctuating picce immediately tells us that Eqs. (15) and (17) must
also be altered accordingly. Thus, for example, Eq. (17) takes the form

T + RT'C-Zqol-Haolc
<AY+(0)2> = ((1 -R Rle—dqol+4aulc)) Nuae-

Since ag > 0, the net effect of the é-correlated pump amplitude fluctuations is to merely reduce
the parametric attenuation of Y-quadrature fluctuations thereby leading to a smaller intracavity
squeezing.

Although we have not discussed the opposite, static pump amplitude noise limit, I't/fc € 1,
it can be seen by physical arguments that for a given amplitude noise (6q’)§, the static case
compromises intracavity squeezing more dramatically than the white-noise case, for it is roughly
the zero-frequency Fourier component of the pump noise spectrum that controls the steady state
characteristics of the signal field. As the noise bandwidth I increases, a fixed amount of amplitude
noise is partitioned into more and more Fourier components, so that the zero-frequency component
(like any other) goes down.
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We turn now to the computation of spectral squeezing of the output field in the presence ofa
é-correlated pump amplitude noise. This task is quite involved when compared with the derivation
of the preceding intracavity variance formula. One must begin with the fluctuating analog of (19)
which may be shown to be

Y.(0,t) = FFe-"O-1=UAY_(0,¢ — 2[c)— e "= (=AY Rec(0, 8 — 2¢/c)

+ ey (Lt -L/c), (27)
in which

n(t)= [ loo+ bt - 2/0)) . (28)

A direct Fourier transform of Eq. (27) is not possible. We must compute first the two-time
correlation functions (Y- (0, 1)Y-(0,#)), (Y-(0,1)Y;**(0,#)), and (Y(0,£)Y(0, 1)) that enter
the output autocorrelation function (You(0,t)Yeue(0,?)) via Eq. (18). A Fourier transform of the
output correlation then furnishes the spectral variance. To compute the former two correlation
functions, we solve Eq. (27) for Y_(0,1) iteratively in terms of Y;** at successively earlier times,
one differing from the next by the roundtrip time 2¢/c:

Y.(0,t) = —iF 20(1"1'-’)":""'-“(‘)1’1“(0,t - 2(n +1)/c)

. (29)
+ 8 ) eyt~ U(2n + 1)/
in which
mt)= [ lao+Sa(t - z/c)dz. (30)

We may use the identity (25) and the white-noise approximation (26) to obtain the useful formula

<e-ﬂr(')c-n,:(')> = e-ttrimte} [(‘"3)+<‘".’-f>+’(‘"r‘"w)] 31)
= e-(ﬂv’)wlcaod(rﬂ"#ﬁr‘),

in which p< is the smaller of (p, p').

When combined with the é-correlated nature of the vacuum fields, relation (29) enables one
to secure the needed correlations from which the following output quadrature autocorrelation
function is obtained [6]:

(Youc0,8) Youa(0,) = § [ (I 4 e 0w 200cK)

+ 8 S (FE( -t = 2(n - n)tfc) et ImtelncnT e (32)

n=0n'=0

- §°(ﬁ’)" [6(t =" = 2nL/c) + §(t — t' + 2nt/c)] e~2net+3monel 4 § (¢ — )]
in which

(Yo (0,0) Y20 0,1)) = (Y2 (L,1) Y2 (,8)) = Co (¢ - 1),
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As before, we are only interested here in the central frequency component of the quadrature
spectrum. This is obtained from Eq. (32) by integrating it over (t — t') in the range (—o0,o0),
which is a trivial task due to the presence of a é-function in every term. The resulting infinite
surns are related to the geomteric series and can be carried out in closed form. The net result of
these straightforward steps is the following noise reduction factor at line center:

S(y) 1 ] t? (‘t’ + ":’Jt'nc—ﬂqo-h.c)l) (l + Ff'c-z("-"cy) 212 . (33)
O =7 |1+ [ et (1 " e Toael) 1= fPe-Hmraeel

When the pump fluctuations are absent (ag = 0}, this expression naturally reduces to result (21).
In general, however, a graphical presentation of (33) is imperative for physical insights. This is
done in Fig. 4 for a symmetric cavity (R = R’). It is no surprise that as the pump amplitude
fluctuations increase in strength, the amount of squeezing reduces for any fixed value of R (i.e.
along a vertical line on the figure). For a fixed fluctuation strength, on the other hand, the higher
its value the slower the squeezing increases, with increasing R, to its maximum value at oscillation
threshold.

A reduction of the amplitude-noise bandwidth, so that I'/c is no longer large compared to
1, leads to reduced output squeezing for the same reasons as for the intracavity field. It is
worth noting that amplitude noise, being essentially multiplicative in nature (see Eq. (5)), is
less important than pump phase noise which unavoidably couples the squeezed quadrature to the
highly fluctuating quadrature, thereby seriously undermining squeezing.

6 Pump Phase Fluctuations

Even the quietest pump, such as one generated by a highly stable laser, has intrinsic random
phase diffusion arising from the purely quantum mechanical process of spontaneous emission.
This means that squeezing in the sub-harmonic signal field when measured relative to a fixed (or
independently fluctuating) phase will show a time-dependent behavior as both the squeezed and
unsqueezed orthogonal quadratures with phases slaved to the pump mix. However, if both the
local oscillator (LO) and pump are derived from the same laser, then the reference LO phase and
the phase of the ideally squeezed quadrature track each other. In spite of this phase tracking,
there is a residual effect on squeezing, due to the time dependence of the pump phase diffusion
(9], which we consider here.

In the presence of a finite §¥(2), as described by a Wiener-Levy Gaussian random process with
moments (24), Eq. (5) has g replaced by ¢e*¥(*), and the signal quadratures X;(z,t) and Y(z,t)
are defined relative to the phase §y(t)/2:

Xi(z,t)= 1 [e‘,,(.:,t)e""“'(')/2 + e-(z,t)e““’“)/’] :

‘ . (34)
Ye(z,t) = & |es(z,t)em 02 - c_(z,t)c'“’(‘)/’] .
These quadratures evolve according to the matrix equation
0 19 i
(a—z + - Bt) Vg(b. ) [qo'a + ZJ!I’(t)Uz] Vt(z':t)s (35)
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Fig. 4. Squeezing of the Central Frequency Component of the Output Field Quadra-

ture in a Symmetric Cavity. The full, dashed, and dotted curves represent values of

- the fluctuation parameter aocf equal to 0, 0.005, and 0.01, respectively, while the
roundtrip gain coefficient gof is 0.05 in each case.
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in which the column vector Vy(z,t) is (X4(z,1),Ya(2,t))T and the o’s are the Pauli matrices

w() (0T )e(18) e

Although Eq. (35) is a first order equation, it is a matrix equation with the coefficient matrix
on the RHS at any time not committing with itself at another time. This renders the solution a
formal one in terms of time-ordered or path-ordered exponentials. The path-ordering (or time-
ordering) has however the advantage that successive path-ordered (or time ordered) exponentials
from one roundtrip to the next may be easily multiplied. One first combines the solution of Eq.
(35) with the boundary connections (9) to determine the single roundtrip evolution of V,.(0,t)
to obtain a matrix analog of Eg. (19). Iterative processing of such equation leads to a formal
solution that can, via the simplicity of writing products of time (or path) ordered exponentials
with contiguous limits as single time (path) ordered exponentials over the entire time (or path)
interval, be expressed in the form

Vo(0,6) = 3 (F7)" C(0,22, m; )Mo W™ (¢ — ant]c). (37)
nx0

In Eq. (37), W** is a column vector related to the quadratures of the two known input fields
and C(0,2¢n; ), a path-ordered matrix exponential involving an integral over §y(t), represents the
residual effect of pump phase diffusion over signal noise.

In Ref. [6], solution (37) serves as the starting point for computing the various variances and
correlations needed for determining the steady-state intracavity quadrature variances and output-
field quadrature noise spectrum. Eq. (37) is sufficiently complex that a statistical averaging over
the phase noise §v, in spite of its Gaussian and é-correlated nature, cannot be exactly performed in
the involved integrals. One must settle for a series expansion of intracavity and output squeezing
in powers of the phase diffusion constant D, which has been determined to O(D?) [6]. We refer
the interested reader to that reference for more details. It suffices here to state that pump phase
diffusion seems to be most important near threshold where the fluctuations in the X —quadrature
of the cavity field have a highly slowed relaxation rate.

7 Conclusions

We have presented here an analysis of squeezing in a degenerate parametric oscillator that lends
itself to an easy physical interpretation for the most part. For completeness, we have also summa-
rized the impact of pump amplitude and phase noises of sorts encountered in a real experiment
on the observed degrees of cavity and output squeezing. An exact analysis for the case of a finite
pump-phase diffusion noise 61(t) is beset by the difficulties of computing the statistical averages
of path-ordered integrals involving §y(t).
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1

One of the most appealing aspects of quantum optics is that within its domain of application
experiments can be realized that used to be confined to the domain of Gedanken experiments.
The proposed [1] quantum non-demolition (QND) schemes for photon number measurement are
such fundamental measurements. In fig. 1 we have sketched a simple setup [1, 2]. A signal beam S
is mixed with a probe beam P in a non-linear Kerr medium. The refraction index of this medium
is intensity dependent. Accordingly, the probe’s phase will depend on the number of photons in
the signal beam. By coupling the outgoing probe beam with a reference beam, the probe phase
can be detected and thus the signal photon number can be deduced. However, this is not the
only consequence of the interaction between signal and probe beams. Also the S-phase will be

N94-10569

Disturbance, the Uncertainty Principle
and Quantum Optics

Hans Martens
Dept. of Theoretical Physics, Eindhoven University of Technology
PO Boz 518, 5600 MB Eindhoven, The Netherlands

Willem M. de Muynck
Dept. of Theoretical Physics, Eindhoven University of Technology
PO Boz 518, 5600 MB Eindhoven, The Netherlands

Abstract

It is shown how a disturbance-type uncertainty principle can be derived from an un-
certainty principle for joint measurements. To achieve this, we first clarify the meaning of
"inaccuracy” and "disturbance” in quantum mechanical measurements. The case of pho-
ton number and phase is treated as an example, and applied to a quantum non-demolition
measurement using the optical Kerr effect.
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FIG. 1 Basic QND scheme, using the Kerr effect.
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Tk

The experiment can be seen as an analog of Heisenberg’s ¥ microscope experiment [3]. Ther
a particle’s position is measured in a non-destructive way. In the y-microscope, it is argued
momentum is disturbed by an amount Dp as a result of measuring position, satisfying (h=1)

8¢Dp 21, (1

6q representing the microscope’s resolution, i.e., its inaccuracy in determining position. Anal
ogously, in the Kerr device, where photon number N is measured, the probe effect on signa.
phase can be expected to take the form of a disturbance, in size reciprocally related to the N-
measurement inaccuracy. In order to avoid certain ambiguities (cf. [4]) we shall give a formal
definition of this disturbance notion. In particular we show how relations like (1) can be derived
in a precise way from uncertainty relations for the inaccuracy, achievable in joint measurements
of incompatible observables. Such relations have become available relatively recently [1, 6, 7).

2 Inaccuracy

We represent measurements by positive operator-valued measures (POVM’s) [5, 8], a notion gener-
alizing von Neumann's projection-valued measures (PVM’s). For a discrete set of outcomes K, a
POVM M = {M,,k € K} generates the probability of outcome k by TrpM,, when the object is in
state p . Hence M must satisfy T yex Mi = i, M, > 0. Asecond POVM, 0 = {01}, is then said to
represent a non-ideal measurement [7] of M if there is a stochastic matrix Au (Srdie =12 20)
such that

0= MM (2)
k

We use the shorthand M — O for this relation. The O-distribution is a smeared version of
the M-distribution. Finally we need to characterize the amount of inaccuracy by a real number.
Clearly, if A = éi, the Kronecker-delta, O is equal to M: then a measurement of O is a perfect
measurement of M. Thus we need to quantify how much ) deviates from 6x. Consider again the
QND scheme of fig.1. Given that the incoming probe beam is described by a coherent state |5 >
and the signal beam by p, it can be shown that the outcome probabilities P(q) of the outgoing
probe phase measurement are given by (2, 9]

P(q) = T, P(qlns) < nslpins >,

Plgins) = okzexp (-4 (122)"] .o = 181, » = 18/ sin (x-ns), ®3)
where we have taken the initial beam splitter’s transmittivity v = 1. The constant x. depends
on the non-linearity coefficient of the medium. Defining the POVM O by the requirement P(q) =
Tr50(q), (2) is satisfied if {M;} represents the photon number observable. The measurement
inaccuracy is characterized by the width of P(g|ns), and can be interpreted as being due to excess
noise inherent in the measurement. For low photon numbers the response is approximately linear:
p = |B|*x-ns. Hence this measurement can be characterized by parameters quantifying noise (o)
and gain (8p/0ns). A suitable inaccuracy measure is the ratio of these two: ‘

o - 1

ON. = = )
Ns = Bufons  |Blx-

(4)
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In deriving (3) we ignored self-phase-modulation (SPM) [1]. It can be shown that, beyond &
certain probe photon number, SPM has a strongly adverse effect on the measurement quality [2]
Refining the setup, however, can compensate for SPM to a large extent [1, 9].

3 Joint Measurements and the Uncertainty Principle

For finite-dimensional Hilbert spaces a general proof has been given that joint non-ideal measure-
ments of incompatible observables are possible, but that their quality is limited by an uncertainty
relation {7]. In the present paper we will focus on the phase-number observable pair. In this
infinite dimensional case no completely general result is known, but the special results obtained
are nevertheless quite convincing. Consider the (non-Hermitean) phase observable,

e:¢=2|n >< n+1j, (5)

given by Lévy-Leblond, |n > denoting the number states[10]. Not only is it incompatible with N,
but the pair forms & perfect analog of the position-momentum pair, cf.

eimseiaN = glaNgimegime m ¢ Z o € R. (6)

Next consider a second (ancillary) system, being in state 4’, and having similar observables ¢’
and N’ defined on its Hilbert space H'. Then the composite observables

et = eide=i¢' N, := N+ N’ (7

are compatible, as evaluation of their Weyl commutation relatxon, using (6), shows. Hence, N,
and ¢, can be measured jointly. Then the POVM {M($,n) = Trn(p'|$,n >< ¢,n)}, l6,n >
being the common eigen-states of é. and N,, describes a joint non-ideal measurement of ¢ and N.
Indeed, for the relation between the probability distributions of N, N, and N’ we find

Py (n,) Z Py.(ne — n)Px(n), Pg(n') =< n'|p'In’ >. (8)
n=0
Comparing this with (2) we see that the Ng measurement is a non-ideal measurement of N, i.e.,
N — N,, the stochastic matrix Ay being given by Py, (n: — n). Therefore the inaccuracy of the
non-ideal N-measurement is determined by the spread in the number n’ present in the state p of
the ancillary system. Similarly the #,-measurement can be seen to be a non-ideal measurement
of $: ¢ — &, the i inaccuracy being determined in an analogous way by the phase spread of
the ancillary system. As a measure 6, of the inaccuracy of the ¢-measurement we may take
8] 63 = -1+ |<e""> |=2. In this way we have a formal scheme of generating joint non-ideal
measurements of incompatible observables. Indeed for position-momentum this scheme has long
been known (e.g. [11]). From an uncertainty relation derived for observables N’ and ¢' in state
p' [8, 10], the following inequality now straightforwardly follows for the inaccuracies of the jointly
performed N-and ¢-measurements:

1
6nby 2 3 9)

This relation is of the same kind as (1). These were termed inaccuracy relations in [7]. In this
special case this relation is a consequence of the restrictions in preparing the ancillary object state.
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4 From Inaccuracy to Disturbance

Neither the 4-microscope nor the QND measurement referred to in sect. 1 are joint measurements:
in the first momentum is not actually measured; neither is phase in the second. Yet, with however
good a measuring instrument we try to measure the signal’s initial phase, we can never quite
remove the inaccuracy from this measurement. It appears that there is a limiting inaccuracy
present already in the outgoing signal beam in the form of a phase disturbance caused by the
presence of a measurement arrangement for measuring photon number. In order to be able to
obtain a quantitative expression for this phase disturbance we first consider the general description
of measurements once again. In sect. 2 we saw that the outcome probabilities of measurement
results (i.e., the determinative aspect of measurement ) in general are described by POVM’s . Now
we also need to take into account the object state after the measurement i.e., the preparative
aspect of the measurement. In the von Neumann framework a measurement transformation of
the first kind leaves the object in an eigenstate of the measured observable. In realistic cases this
should be generalized to operation valued measures (OVM’s) [5]. If a measurement yields outcome
k, the output state will be jix(5), given that the object started out in state 5. The probability of
k is then given by Tr[ix(p)]. Accordingly, the mapping p — fix[p] should satisfy

S Trlia(d)] = Trigl, 5> 0 — fu(3) 2 0. (10)
keK

The POVM M = {M,} corresponding to the OVM {i;} is therefore given by
V;Trlin(p)) = Tr(pMi) & Mi = al[i]. (11)

For every OVM there is only one POVM, whereas many measurement transformations may realize
a given POVM. Now consider the outgoing object. Suppose we measure some POVM O = {0}
on it. Then the probabilities are given by

Po(l) = Trlix(p)01) = Trlpiak(On)], ik = k};m. (12)
€

Hence a measurement of O in the final state can be seen as a measurement of & = {O;} =
{}(0))} in the initial state. Moreover, every repetition of the experiment yields values for both
| and k. Therefore we have a joint measurement, characterized by the bivariate POVM {atOn},
of which @ is one marginal and M is the other one. Summarizing, we see that consecutive
measurements of M and © may be seen as joint measurements of M and O.

Let us apply this to the QND scheme. Suppose we want to look at the outgoing signal beam S’
in order to find out the initial signal phase. Then we must not measure the phase of the outgoing
state pg, i.e., not ¢ — O in fgr, but we must have g5 — & in ps. We should build the O-device
such that ® is related to ¢s by (2), rather than that O itself is thus connected to ¢s:. In this way
possible distortions in the medium are compensated for. Since SPM has the effect that ¢s and
s are incompatible [2], this difference is not quite trivial here.

K ¢s — O, however, we have a joint measurernent of Ns and ¢s. The former, the QND POVM,
measures Vs, the latter we must choose so as to measure @s. Accordingly, (9) is applicable. The
phase inaccuracy thus achievable is limited by (26ng)7".
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Note that we have made no assumption about the nature of POVM O whatsoever. The above
reasoning holds quite generally. Define therefore

€45 = inf(bes), (13)

where the infimum is taken in the set of all POVM’s O satisfying ¢s — O. Assuming s to be
optimal, for all such POVM’s O the bound (9) must hold, so that [12]

1
€osOns 2 9 (14)

The quantity (13) does not depend on @ (which is a variable in a set of POVM’s), but on the
meter’s transformation jix, which is implicitly contained in the condition ¢s — ©. Thus €4, is
a property of the Ns-meter, known once the OVM {ji.} has been calculated from the device's
blueprint. €4, characterizes how much initial phase information can be retrieved from the outgoing
signal. In that sense the term disturbance is apt [12]. If all phase information is lost (e.g., if {/}
is a measurement of the first kind), the disturbance €4, is maximal. If, on the other hand, the
meter measures nothing (e.g., if ix(p) = g for all p), there is no disturbance at all, and ¢4, = 0.

5 Phase Disturbance in the 'QND-Scheme

Finally, we study the phase disturbance in the Kerr-setup of fig.1. Define generalized phase states

;v >:= 2(21)'1/23(‘“+*‘”"("+1))|n >, (15)

For v = 0 these reduce to the eigenstates of (5). Then it can be shown that we need to measure
the POVM {|¢; —§xr >< &; =1x-|} on S’ in order to get information on ¢s . In fact, (2, 13]

¢k (9 =3xr >5:< ¢ =3x+|) = [Z, (¢ — &)|¢' >s< ¢'|d¥/, (16)
() = £03[kg; e 48R3,

the latter approximation being valid for low photon numbers. Here ©3 denotes the third of Jacobi’s
O-functions. The smearing function u is plotted in fig.2. Note that the convolution form of (16)

FIG. 2 Polar plot of the phase smearing function u(¢) (linear regime, |8|*x2 = 8).
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is in agreement with:(2). We have discarded an uninteresting phase bias term in (16).
Calculating 6, from (16), we get &3_ =~ —1 + exp(£|8/°x}), implying (cf. (4)):

1
log (1 + 83,)6%, = I
This is only slightly worse than the bound set by the uncertainty principle (14), indicating thai
the measurement procedure described by (16) is optimal in the sense that 64 =~ €4,.
As said before, the disturbance concept evades distortions in the medium, and therefore phase
disturbance is unaffected by SPM, contrary to photon number inaccuracy (but see [9]).

(17,
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Abstract

The possibility to represent the quantum states of a harmonic oscillator not on the whole
a-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaus-
sian distribution along a straight line describes a quadrature squeesed state while a similar
Gaussian distribution along a circle leads to the amplitude squeesed state. The connec-
tion between the one dimensional representations and the usual Glauber representation is

discussed.

1 Introduction

There are several widely used representations to describe a state of a quantum oscillator in the
Hilbert space. The most natural one is the expansion of the state into the number state

00
[e>= Y} en|n>. (1)
n=0
Another well known possibility is the coherent state representation [1,2]
| f>= -:-[f(a‘)exp(— la|?/2) |a>d%a, da= d(Rea)d(Ima), (2)

f(a®) being an analytical function of o*. Here the state is represented by a superposition of

nonorthogonal coherent states all over the complex a-plane. _
As already Glauber pointed out, there is an infinite number of ways of expanding any state

in terms of coherent states due to the overcompleteness of the latter states

| >= -‘l-jG(a,a") la > d2a, (3)

here the expansion function G(a,a*) may be a rather general function of ¢ and o®*. Being
confined to some given class of functions the uncertainty in finding G(a,a*) can be reduced. In
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this paper we shall deal with such representations that correspond to kern functions Gla,a*)
leading to integration over a one dimensional manifold of the a-planein Eq. (3). The possibility
to represent any state on a subspace of the complex plane comes from Cahill’s theorem on
overcompleteness [3,4]. We shall show that such nonclassical states as the quadrature and
amplitude squeezed states can be represented very natu rally by superposition of coherent states
along a straight line or along a circle in the a-plane correspondingly. '

2 Representation along a straight line

The most simple states emerging from superposition of coherent states are the even | 2,+ >
and the odd | x,— > states

|3,+>= C+(l¢‘>+|—3‘>), (4)

|g,=>=c-(l>-|-2>), (8)

where | x > is a usual coherent state with real eigenvalue of the annihilation operator ¢ | x >=
x| £ >. It is remarkable that the even state | z,+ > beinga superposition of two classical
states is squeezed (5]

(Bag)? = J - ¥/[1+ exp(257)]. ©)

where 4] and a9 are the Hermitian quadratures of the annihilation operator.
The squeezing can be further enhanced by adding the vacuum state to |2, + >

|z,p>=cp(| s> +p 0>+ ]| -2 >). (7)

This way one can achieve a variance (Aag)2 = 0.0651 instead of 0.111 for | x,+ > or 0.25 for
the vacuum state. Superposing more and more even states to it one can get even more squeeging

00
[1>= [ Je)]s> s (8)
—00
In fact for any positive even function f(x), but for the f(z) = ¢ () describing the vacuam,
the state defined by Eq. (8) is squeezed. A most important particular case is the Gaussian
superposition function [5,6]

f()= ¢ expl-a?/ah), e=\\T+ D)/t ()

describing the usual squeezed vacuum state with uncertainties of the quadratures

(Ba)? = (1+1%)/4, (Bag)? = 1/4(1+7%). (10)
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Similar distributions can be constructed not only along the real axis but along any straight
line. For example the squeezed coherent state with coherent signal o and squeezing parameter
¢ = rexp(¢d) can be written in the form |7 8]

00
a6 >= / f(z,0,¢) | @ +exp(18/2)x > dr, (11)
~00

f(z,0,0) = ¢ exp(-2? /72 —ibz), 6=Imla®exp(id/2)], 7=\e¥-1.. (12)
As the Gaussian superposition of coherent states of Eq. (8,9) was a useful generalisation of
the even states of Eqs. (4,7) analogously one can build an odd state | 4,1 > resembling Eq. (5)

00
In1>= [ Gler1)|e>ds, (19)
—00
2

Glev 1) = epzexpl=22/1%), oy = {1+ D)3/, (14)

The mean photon number and the urcertainty of the quadratare a9 in this state are

4
f >= 14+ - 15
<7,1|ala]y,1> +4—(1—+—7-2")-, (15)
and
(Aag)? = — (16)
4(1 + 74)

We can see that the state | 4,1 > coincides with the one photon state | 1 > in the limit 4y = 0
and with increasing y at < 4,1} ate | 1,1 >= 2, 4= /2 it becomes squeezed.

Similarlyone can define states | 4,8 > with 2™ instead of = in their weight function G(x,7,1).
Superpositions of such states leading to Hermite polynomial weight functions are rather remark-
able

o0

| hn >= [ ha(2) | 2> ds, (17)
—o0
3 _
hn(z) = \/\/5/(2n!]Hn(-\/%)exp(—x2/2). (18)
The states | ha > are orthonormalized (< kn | Am >= fnm), satisfy the relation
. .
8| hg >= "; ]hn+1>+‘/§|hu_1>, (19)

and correspondingly
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<halalhn>=0, < | [hn>=2(2n+1), <hn|ala|bn>= il
The projection operator constructed from the Hermite states
00
Py = E | hn >< Aa |, (21)
n=0
is a unity operator both for the coherent and photon number states
<x|Pyly>=<z|y>=expl-(z-)?/2], (22)
<n|Pk|m>=6”m, (23]

which shows that any state can be represented by them. For example one can expand a | f >=
[ f(2) | £ > dx state into the | Ay > states

|/ >= gofa | An >, (24)
where
00
fn={ [ fe)haly)expl~(x - 5)2/2ldedy. (25)

3 Representation along a circle

Let us now consider a state emerging from superposition of coherent states with the same
amplitude | a |= R i. e. we choose only those coherent states which lie on the same circle in
the a-plane [5].

2
| PR >= Z2ETD [ pg) | Rexp(is) > ds. (26)
If the radius of the circle is chosen big enough so that Eq. (2) can be replaced by
1
[f>== J(e*)exp (| a? [2) | a > é0, (27)
|a[< R

then we can find connections between the distribution function F(¢) and Glauber's weight
fanction f{a*)

—-a

Fiy) = 222 / fa 22l Pl ae  Repis)
la|< R
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and

1(0*) = § F($)exp(a*2)ds. (20)

We note that if one knows the time behaviour of the annihilation operator a(f) the analytic
expansion function f(a®,{) can be found from the expression [9]

Hot) = [ éaxtoent=1n 1 -1e)f fr [ rxndenl-100), ()

where x(9,¢) is the normally ordered characteristic function (p being the density operator)

x(n,1) = Trlpexp(nal (1) exp(-1*a (1)) (3
Using Eq. (28) we find for the n-photon state and the coherent state correspondingly
F($,8) = VAIR™™ exp(-ing), (32)

floa) = 2 Cle

According to Eq. (32) we can obtain the coefficients of the n-photon representation cn of Eq.
(1) if we know the distribution function F(4)

cn =RnFu/\/ﬂ, (34)

where Fyy are Fourier coefficients of F(¢)

, |a|<R. (83)

00
Fi$)= L exp(-ind)Fn. (35)
n=
An interesting state is the state with Gaussian distribution function | u >

2
P($,u) = cy exp(—id¢ — 3§-¢2). (36)

In case of extremely large u it describes the usual coherent state while in the opposite limit
it is the n-photon state (n = §). Between these states it will be an amplitude squeezed banana
state. Graphically it can be understood if one visualizes how with decreasing u the muffin-like
coherent state going through a squeezed crescent-like state deforms along the circle into the
donut-like number state. :

It is also worth mentioning that the Gaussian superposition of coherent states along an arc
are not only describe amplitude squeezing {10,11] but they are also approximate number-phase
intelligent states [10] associated with the Pegg-Barnett phase operator (12].

Remarlkable feature of this state is the complete analogy with the usual quadrature squeezed
state discussed in the previous Section, as the Gaussian arc distribution is amplitude squeeged
while the Gaussian straight line distribution is quadrature squeezed. Moreover, as the even

59



PREREL1 TV

superposition of two coherent states from Eq. (4) can be derived by truncation from the straight
line Gaussian state of Eqs. (6,9) so Schleich’s superposition state [13]

|6 >= coqll ac®/?> + | ae™#/2>), (37)

similarly can be considered as a truncated arc Gaussian state of Eqs. (26,36).

A physical example, the so called phonon squeesing |14], where an arc distributed state
occurs is the Franck-Condon transition induced by short coherent light pulse in a molecule
(5,14,15]. It is worth mentioning that using Eq. (28) one can to some extent purposefully shape
the molecular vibrational state by special choice of the characteristics of the exiting light pulse.
For example we showed that by appropriate linear chirp the vibrational state can be turned
in the o -plane while using nonlinear chirp the amplitude squeezed vibrational state can be

deformed into a typical quadrature squeezed form.
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HARMONIC OSCILLATOR INTERACTION
WITH SQUEEZED RADIATION

V.V.Dodonov, D.E.Nikonov
Moscow Institute of Physics and Technology
Zhukovsky, Moscow Region, 140160 Russia

Although the problem of the electromagnetic radiation by a
gquantum harmonic oscillator is considered in textbooks on quantum
mechanics (see, e.g», [1]J) some 1its aspects seem to be not
clarified until now. By this we mean that usually the initial
gquantum states of both the oscillator and the field are assumed
to be characterized by a definite energy level of the oscillator:
and definite occupation numbers of the field modes. In connection
with growing interest in squeezed states it would be interesting
to analize the general case when, the initial states of both
subsystems are arbitrary Superpositions of energy eigenstates.
This problem was considered partly in Refs. 2-4, where the power
of the spontanecous emission was calculated in the case of an
arbitrary oscillator’'s initial state (but the field was supposed
to be initially in a vacuum state). In the present article we
talculate the rate of the oscillator average energy and squeezing
and correlation parameter change under the influence of an
arbitrary external radiation field. Some other problems relating
to the interaction between quantum particles (atoms) or
oscillators with the electromagnetic radiation being in arbitrary
( in particular, squeezed) state were investigated, e.g., in Refs
S5~7.

Let us describe a charged harmonic oscillator by a
Hamiltonian
Ho = hw a'a (1)
and the field by a hamiltonian
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H‘ = h }J: wjbjbj. (2)

here w is the frequency of the oscillator, mj - ones of field
modes, a,b - corresponding destruction operators.

In a rather general case interaction can be described in a

form

H = hE [uja*b; + >\J_.a"nJ * Hc] (3
(H.c- means hermitian'c;njugated part, p;and Kjare constants) .

In Schrodinger picture an arbitraty initial state vector
|w(0)} evolves into a state vector |ws(t)> as prediﬁted by
Schrodinger equation with Hamiltonian H = Ho + H‘ + H;

In interaction picture any Schrodinger operator @ changes

according to evolution operator Uo corresponding to H = Ho + Hn

. \ +*
g((t) = Uo(t)DUO(t)- (4)
For example
a(t) = a exp(-iwt), bft) = bjexp(-iwf)- (S)
The interaction Hamiltonian in this picture

H = h YT [uia’b;exp(iwjt+iwt) + )\ja*bjexp(-iwjt-*imt) + H-c-] (6)
i J

generates évolution operator U(t) so that a state vector in this
picture defined as
-+

Jwit) > = Uo(t)lwg(t)> {(7)
will variate according to

jwit) > = U(t)|w(0)>- (8)
Expectation value in this picture

<Q>I = <w(t)|D|w(t)> ()
variates slowly, only due to interaction. On the other hand, it is

related to the conventional expectation value as follows

<0 = < * b ™
uaix ~ws|U°QU°|wg. ST}
After introducing designations we can pose several questions

to answer:
1. Can absorption and emission be distinguished in a general case 7

2. Then how to calculate the rates of these processes ?
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Z. Is time ordering important in perturbation calculation for this
case ?

4. Does stimulated emission manifest itself ?

. How does squeezing parameters of the oscillator and the field

vary 7

To calculate the rates of the processes we need to consider
infinitely 1long ¢time intervals 1T + o in comparison with
oscillation period. But they must be much shorter than damping
time. Then the evolution operator has meaning of scattering matrix
S transforming initial state |w(O)> = |i> to resulting one |ro.

From Heisenberg equation one gets
S = expT(—iT), (11
where all products are believed time—ordered (designated with

subscript T), and T - matrix is given by

m
T =4 HI(t)/h dt. (1)
-0
For our particular case
T = 2nh | [xja’bjesmj—u) + H-c-], (13)

J
here the terms with g vanish because of a factor 6(w;mn- Further

6j = 6(aﬁ—m)-'Delta function originates as a limit of an integral
T/ 2
Int = s exp (i) dt (14)
-T/2
(here the initial instant in time re-designated as -1/2) .
Limits of this integral are
Int » 7, if Q » 0, (147)
Int » 27 &(), if T » o (14")

Conventional techique in guantum electrodynamics is as
follows [Bl. T - matrix is splitted into two parts - absorption

part

T =2n [ )\ja*bjé(wj—m) (1%
J
and hermitian conjugated emission part T'« Then probability for
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time v of absorption ( and similarly emission ) is declared as
Po=ci [T ix =L | <f T }i> |5 (16)
t

where summation is performed over a complete set of possible final

states. 1f rewrittemn in a form
T = ZnM-6<Ef—E‘), (7

where Ef and E,L are energies of final and initial states, it shows
employing (14) that (16) expresses the well-known Fermi’'s rule

20T _ 2
P = —;— T |<f|M |i}| 6(Ef—EL)- (18)
n

Eut is it always valid and why probability is defined in this
manner 7

The expansion of 8 - matrix (11) is as follows
s =1 - i(TTT) - (T /2 4+ . (19) .

The identity of normalization must be valid 1in all orders of
perturbation, i.e. for all powers of T as it is proportional to
the first power of coupling constant :
f o= crr> = < fi> + G TTTT D> « < |TTTT i
+ A TTTT iy + < TTT iy - <i|(T2)T[i> + ean (20)

Then terms from second to fifth can be interpreted as a
probability of transitions in the second order, since the first
and the sixth will be probability to stay in the initial state. So
conventional procedure ignores the second and the fifth terms. It
is possible only if T-|i> is orthogonal to T’|i>- It can happen
when either field or the oscillator is in energy eigenstate. Then
actually only two levels are involved in any sort of transitions.
In this case emission and absorption can be distinguished. That is
on obtaining after measurement one of |f> states we can tell a
result of absorption from a result of emission.

For arbitrary initial state they cannot be distinguished
experimentally. But the total probability of emission and
absorption together in (20) does not have physical meaning.

Therefore we have to revise our approach. More well-grounded
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procedure is to calculate not probabilities but observable

variations :
a<@> = <i|sT@S[i> - <i|@]i>. (21)

Hesides, we do not need to introduce the Fock basis |f>, but deal
only with the initial state.

Since the observable variation is expected to grow with time,
to calculate the rates of the processes we need to consider only
terms proportional to long time v« We will see later that
expressions like (21) contain terms with factor &{w-w) and terms
with 62u%—é) under a sign of summation. One poter of delta
function disappear because of summation over the continuum of
modes. The rest one power will transform to factor 7. So terms
with delta function of infinitely little difference to the first
and zeroth powers will give non-growing with time observable
variation. Consequently, these terms represent dressing bére
states by virtual gquanta. Terms with the second powers of delta
function will give time-proportional variations of observables.
Just these terms correspond to transitions with creation of real
quanta.

For our case we need S - matrix up to the second order of

perturbation. In this order a time—ordered product

A}

) ®
2 2
(T )T -_é dt‘ _é dt2 E&(t‘)Hx(tz)]T/h ’ (22)
where
Hx(tz)Hx(tg)’ if t2 > t‘,
[Hx(t‘)H!(tz)]T = (23)
H (¢t YH (), ift >t ,
I 4 1 2 1 2
is different from non-ordered product
2 X 2 -
(T )T = TxT + T it (24)
by a term
t
.2 @ 2 2
= - ~eE
T dif _& dt2 _é dt‘ Ph(tz)Hx(tt)] /7h°, (2%5)
The latter expression depends on time like
® ‘2 expli (A=) 21 - 1
_£ dt2 _& dt‘exptxAt2+1Cn1) = 40 S(A+Q)) lim « (26)

ZH i (A-D)
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Such terms do not vanish only if A= -0 If A= o + wjthen the

last factor in (26) is not singular. Terms with A = wj - w or

. . 2
opposite give a contribution to T it

2 v . exp (2i AZ) -1+exp (=21 AZ) -1
-
T |xJ| [abj,a bj] SiA ’ (27)

which is not singular either. So TZ&J contains first powers of
delta functions and can be neglected compared to T (the former 1is

coupling constant thimes less).

We arrive to an assumption

8§ =1 —-iT - TxT/2, (28)

that leads to .
AC@>_ = <i] 40T,Q3 - 3 [T,0T,813 [i> (29)
the first term being virtual and the second - real.

Straightforward calculation using (29) gives for example

Aca>. = - T ir2m6<b> - £ £ |x |*(2n6) Xa>, (30a)
I , IS B 2 £ i i
J J
* 1
b oy o= o-i - = <b.> 3
A bk 1 1)\k2n6k<a> 5 Xk2n6k ? XJ_Znéj I:>j s (Z0b)
Aca’a>. = i T (\"b%a> - x<a® 2206 - L |2 |?(2ns ) %<a"a>
1 F i J J J ” k k
1 ®_ 4 » LN 2
+ 3 gj()\j)\k<bkbj> * ANBTD L) (2m TS, (30c)
sBTh v o= i cat - !( T 2<_, * (D 2
A<b b > i(n <a b, > Xk"bka')znék + Ikkl laan(2né,)
* + L 2 +
- ~ e * 2 < > . =
né, [ A, EX2n6<b7b > + A KA 206<bb - ] (Zod)

J J
These variations are expressed in terms of expectation values 1in
the initial state (designated with triangle brackets). One can
define quadrature component variances by
D(P,@ = 3 [<:PQ:.~ + <GP ] — <P<QS. (31)
Their variations can be expressed similar to

AD(a,a) = A«:aa::-!'- 2<¢a> Aa>_ - (A<n>x)2- (32)

I

This kind of variance is important because in canonical
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coordinate-momentum space ImD(a,a) corresponds to correlation and
ReD(a,a) - to squeezing. In Scwodinger picture they rapidly
transfer from each to other.

Retaining in (30) and (32) only terms proportiornal to rt and
dividing by 7 we obtain time derivative equations. From them we

clearly see that radiation damping

y =T |kj'22m5j (33)
J
determines variation of amplitudes
d 4
- car - {ar 3
4 gt e = 5 <ar, (34a)
1 2
— - = < . 3
gt ‘bk>x = 5 |Xk| 2n6k ‘bk> (Z4b)

These equations coincide with those obtained usually in the
frame of Wigner - Weisskopf approximation. Field modes and the
oscillator exchange their energies. As a result there is no effect

of stimulated emission but only two independent fluxes of energy:

d
—_ ’ - & M 2'1 2 ¥ -y
gt Caa> = ria a> + § Ikkl 2ns,<b.b >, (34¢c)

= <b’b > = |n |*2n6 <a’a> + |n |*2n6 <b’b >. (34d)

dt Tk x'1 ) 3 k k k "k k -

Squeezing-correlation parameter behaves in a similar way !
d

2 -
at D(a,a)! = — yD(a,a) - g kk ZnékD(bk,bk), (Z4e)
d
—— = - ’2. - 2. =
Y D(bk,bk)x hk EnékD(a,a) |kk| 2n6kD(bk,bk)- (24€)

Further development can be made for the specific expressions
of coefficients in Hamiltonian (3). For the continuum of modes
summation is substituted by integration over phase space and
summation over polarizationm indexes r

Y » ¥ s VpdodQ (3S)
j r
with volume V, solid angle element dQ2, mode fregquency density
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Decomposition of vector potential A(r,t) over mode variables is

Alr,t) = [ Jé"-h_v_ e, (b (tiexp(ikyp) + Hec.). (37)
;

w £
) o

where e is a polarization vector and kj- a wave vector of j—th
J
mode -
Gauge invariance substitution of oscillator momentum p + p -~

eA leads to the interaction Hamiltonian (3
-epA ezAz
M = > —
4 m 2m

Here e,m are the charge and the mass of the oscillator. The second

(38)

term in this case proves to be a unity operator in state-space of
the oscillator- Hence it results in an infinitely little
renormalization of field energy because of a factor 11/V (for

infinitely large volume V). The coupling constant will be

Nin

Xj- -1 cosef (39)

w.me V
) [« ]

where ejis the angle between a polarization vector and the
oscillation direction.
On the other hand, from the Hamiltoniam in another gauge form

H1 = -~ eqE, (40)

where q is a coordinate of the oscillator and E is the electric
field vector, it follows that the coupling constant

W,
S 53 . (41)
But as all expressions contain delta functions 6(oﬁ—w), constants
(T9) and (41) coincide. We see that it is one of the cases when
gauge transform, performed over state vectors in the absence of
vector potential and corresponding to a change from gauge form
(40) to (I8), does not make any difference. These transforms were
considered in detail in Ref. 10.
Einstein's stimulated coefficient can be also introduced-
However it is different from a common one = it depends on the

angle and expresses radiatfcn power instead of probability :
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2 ne?cos?e -

B = 2nV |)\| EE‘T. (42)

The spontaneous emission coefficient 1is obtained from (33).
Integration should be performed over solid angles of polarisation
vectors (they are also isotropically distributed), not wave

vectors of modes :

2 2 2
w e‘w

Y= TS [ Baa= gt B (43)
4n ¢ ()

A light beam containing several close modes has an esnergy density

+
W, = E e<b’brho (44)
r
or W= s W do (45)
(A
It will allow us to express eqs. (34) through physically
meaningfull values.
d + +
d—;[huca a>] = - rheca’a> + S BW d0, (46a)
d +*
Ty [wv] = B [pm.m a> - ww], (86b)
d D(b,b)
= D(a,a) = - »D(a,a) + S BW — d, {4bc)
dt © rxb¥b>
d
Ty (WVD(b,b)] - B [pmxb’bm(.,a) - me(b.m]. (464)

All above discussed enables us to answer posed guestions 1
1. In general absorption and emission can not be distinguished.
2. S0 not Fermi’'s rule but expectation values should be used to
calculate the rates of these processes.
3. Time ordering in this case is not important up to the second
order of perturbation.
4. Stimulated emission does not manifest itself in the final
result.
S. Energy and squeezing-correlation parametérs behave in a similar
way 1 therev are independent interchange fluxes of them

proportional to their current values.
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PHOTON NUMBER AMPLIFICATION/DUPLICATION
THROUGH PARAMETRIC CONVERSION

G. M. D’Ariano, C. Macchiavello, and M. Paris

Dipartimento di Fisica ‘Alessandro Volta’, via Bassi 6, I-27100 Pavia, Italy

ABSTRACT: The performance of parametric conversion in achieving number amplification
and duplication is analyzed. It is shown that the effective maximum gains G. remain well
below their integer ideal values, even for large signals. Correspondingly one has output
Fano factors F. which are increasing functions of the input photon number. In the inverse
(deamplifier/recombiner) operating mode, on the contrary, quasi ideal gains G. and small
factors F. >~ 10% are obtained. Output noise and nonideal gains are ascribed to spontaneous
parametric emission.

1. INTRODUCTION

The ultimate transparency of optical networks is essentially quantum-limited and any improvement
beyond the standard performance depends on availability of nonstandard high quality quantum
amplifiers. The photon number amplifier (PNA) and the photon number duplicator (PND) are the
quantum devices which are needed in direct detection.! The PNA ideally should affect the state
transformation

In) — |Gn) | (1)

for integer gains G and input eigenstates |n) of the number. Similarly, the PND, instead of
amplifying the photon number, produces two copies of the same input state for eigenstates of
the number, namely

In) — In,n) . (2)

Both devices are particularly suited to local area network environments, where the minimum loss for
user-derivation is 3dB (in average), and transparency rapidly degrades with the increasing number
of users. In such situation the PNA represents the ideal preamplifier to be inserted before each
derivation, whereas the PND—which ideally realizes the quantum nondemolition measurement of
the number—could itself be used as an ideal lossless optical tap.

The PNA and PND could also be profitably used in the inverse operating mode, namely the
PNA as a number deamplifier and the PND as a number recombiner. The number deamplifier could
be used as a number squeezer, allowing production of subpoissonian states from coherent light; the
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number recombiner, on the other hand, could produce novel nonclassical radiation from input twin-
beams [an example of such application in production of phase-coherent states? is proposed in Ref.
31l

The concrete realization of high quality PNA and PND for practical applications is an arduous
task. As explained in Ref. [4], number conversion, in a way similar to the customary conversion,
requires a medium with a x® or x(® susceptibility, but here with a phase-dependent polarizability.
More precisely, almost ideal number conversion can be achieved upon modulating the nonlinear
susceptibility at a (G ~ 1)-submultiple of the wavelenght of the amplified mode, G being the integer
gain [feasibility studies of number conversion using multiple quantum wells heterostructures are
currently in progress®]. The required phase-dependent polarizability in a x or x*) medium may
also be regarded as an intensity-dependent coupling for a %@ or x{6*") medium (simply from polar
decomposition of the boson field operators). This suggests that a gain-two PNA should be simpler
to realize than a generic G > 2 amplifier. However, as also explained in this paper, the intensity
dependent coupling should follow the power low (a'a+1)'/2, a'a being the number operator of the
amplified mode. Such a decreasing factor is essentially the (1+1 )~'/2 saturating behaviour of a two
level system effective susceptibility in the inhomogeneous-broadening limit,* but it is not obvious
that this power low—which is obtained in a semiclassical context—could survive in the quantization
procedure.

The previous observations quite naturally lead to ask if the conventional conversion could
somehow simulate the number conversion, and what would be the range of physical parameters
where ideal behaviour is better approximated: this is the subject of the present paper. Quite
unexpectedly (see for example Ref. [1]) we find that ideal behaviour is never approached, even in
the limit of large input signals. The most striking result is that conversion is never complete and,
therefore, the effective maximum gains G. remain well below their integer ideal values, even for large
input photon numbers: quantum mechanics thus reveals its subtle nature even for large quantum
numbers, here in form of noise in amplifiers [for a discussion on applicability of the correspondence
principle in a different context, see Ref. [7]].

The inverse devices—namely the number deamplifier and the number recombiner—are better
approximated by parametric conversion than the direct ones. We will show that ideal gains are
achieved in the large-n limit, whereas Fano factors F. remain nonvanishing but small (F. ~ 10%).
Therefore, it seems that at present the devices which are simplest to realize concretely should be
the number deamplifier and the number recombiner (even though probably the limited output noise
of the deamplifier could not be satisfactory for applications as number squeezer).

After presenting the theory of the ideal devices in Sect.2, the connections between the
conventional and the number conversions are explained in Sect.3, where a simple mean field approach
for analytical evaluation of the conversion time is also given. In Sect.4 the announced numerical
results on conversion times, effective gains and Fano factors are presented. In Sect.5 we conclude
with some remarks on the physical interpretation of the nonideal behaviour in terms of spontaneous
parametric emission.

2. THE IDEAL NUMBER AMPLIFIER/DUPLICATOR
In the Heisenberg picture the ideal PNA corresponds to multiplication of the number operator by
the integer gain G

a'a — Ga'a, (3)

a being the annihilator of the amplified mode of the field. Because of the integer nature of a'a,
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the deamplifier does not trivially correspond to replace G into G~ in Eq. (3). Actually the ideal
deamplification is the following

a'a = [G™'atq] (4)

where [z] denotes the integer part of z. As a consequence, even in the ideal case, the deamplification
has an input-dependent effective gain G.

_lc7"

G. == s (5)

for n input photons, and G. ~ G~! for large n. [As an example, the case G = 2 is depicted in Fig.
4.] In terms of the shift operator é, : é,|n) = |n + 1), the transformation (4) is obtained as follows

€y — (é+)G ' (6)
where now (é,)¢|n) = |n + G). In fact, the map (6) corresponds to the following?
a’ - GIG) 3 (7)

where a:G) is a boson operator creating G photons at a time,® namely

ajg)ln) = VIGn] +1n+G), (8)

[a(G)’aZG)] =1, [“(G)s afa] = Ga(a) . (9)
The explicit form of a{c) is
G la)(h -G
ajg) = { [ ],(,. L } (a")° (10)

and from Eq. (10) it follows that
G:G)a(a) = [G"a'a] ) (11)

which is the deamplification (4). The direct amplification (3) corresponds to the inverse
transformation

[see Ref. (3] for more details about these maps]. The transformations (7) and (12) are essentially
permutations of two different types of boson. For commuting modes [a,c] = [a,c!] = 0 the permuting
map @ « c is realized by the Heisenberg evolution

PaP =, PcP =a, (13)
where

LK’

P=P =exp (:;c'c) exp [—z— a c+ c'a)] exp (zzc c) . (14)
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However, as a and a(g) do not commute, it is convenient to consider a simultaneous change of the
field mode (namely the amplifier also converts the frequency or changes the field polarization). In
this case the amplifying operator is :

T r r
Py = exp (lEC'C) exp [—15 (“IG)C + c’a(g))] exp (tic'c) . (15)
The operator (15) now attains the transformations
Po(i®é)Pe = ()81, PglE)ei]Pa=18é, (16)

where in the tensor notation O, ® O; the first entry is for the a mode and the second entry for the
¢ mode. The Schrédinger evolutions of the number eigenstates corresponding to the amplifying and
deamplifying operating modes are

P(G)'O!n) = lGn,O) ’ (17)
Pgn,0) = |G (G 'n),[G 'n]), (18)

where (z) = z— [z] denotes the fractional part of z and |n,m) = In)e ® |m).. If one would consider
only one mode in the above transformations—say a—a frequency conversion P(;) is needed. In this
case the evolutions (17-18) rewrite

P(G)P(l)l‘n,()) = |Gn,0) (19)
PyyPg)l0,n) = [G{G 'n), [G'n]), (20)

whereas totally ignoring the mode c corresponds to trace the transformations (19-20) over this mode,
adopting a density matrix representation for states. In this way nonunitary transformations for the
reduced density matrix of the signal mode a4 are obtained, which do not preserve the Newmann-
Shannon entropy: these are the ‘photon fractioning’ and ‘multiphoton’ transformations of Refs.[3,9].
The mode c is responsible of the added noise which is present even in the ideal case (see Eq. (5))
and corresponds to the ‘idler mode’ of the customary linear amplification.?

Apart from the I phase shift—which can be obtained by changing the optical path of the
b mode and which, however, for an input number eigenstate corresponds to an irrelevant overall
phase factor—the evolution operator (15) comes from the interaction Hamiltonian in the Dirac

picture

IA{I = azG)C + h.c. (21)
for a dimensionless evolution time
*

=—. 22
T=3 (22)

The Hamiltonian (21) has the following constants of motion
iy =a'a+ Gcle, (23)
di,=G(G 'a'a) =G(G i), (24)

and, because of identity (24), only 4, must be specified. In the following evaluations we use the
basis of the Hilbert subspace corresponding to fixed 3, eigenvalues

In),, = |84 —Gn,n),  n=0,1,..[G "] (25)
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In this basis Eqs. (17-18) rewrite

P(G)ln)Gn = !O)Gn ’ (26)
Pi6)|0)n = |IG™'n])n (27)
whereas the Hamiltonian (21) takes the tridiagonal form
Hiln), = alln - 1), + aln + 1), (28)
o) = /n([G-1a] —n +1). (29)

Conservation of the interaction Hamiltonian (21) itself corresponds to the resonance condition
Gw, = w.. In the nonresonating case a third pump mode d is needed with wy = Gw, — w.: Eq. (21)
is obtained from the interaction Hamiltonian in the Schrédinger picture

A= azG)cd +h.c. (30)

in the parametric approximation of classical undepleted pump, namely with d in a highly excited
coherent state.

The photon number duplicator in some respect is similar to the gain-2 photon number amplifier.
Instead of amplifying the number of photons, it produces two copies of the same input state for
cigenstates of the number operator. If the input copies are carried by the modes a and b whereas
the output by ¢, the duplication map reads

10,0,n) — |n,n,0) (31)

and is trivially inverted for n, = n, [for the general case see Ref. [3]]. The state transformation
(31) corresponds to the Heisenberg evolution

é+®é+®i—¢i®i®é+, (32)

which is obtained as permutation of the boson operators a(, ;) and ¢, where azm) now denotes the
two-mode creator

aZL])Inmnb) = \/(min{n..,rm,}) +1ljn, + I,mp + 1}, (33)
[a(l.l)a“zl,x)] =1, [a(l',),a'a + b'b] = 2a(1,4) - (34)

The following realization of “:1.1) is obtained in Ref. 3]

a:m) =¥ \/max{a’:z, bb} +1 (%)
In a way analogous to the PNA, the Dirac picture interaction Hamiltonian of the PND is
A =a},c+he., (36)
with constants of motion
ip = % (a*a +blb+ 2c’c) ; (37)
dp = a'a - b'b. (38)
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The Hilbert subspace of interest for duplication corresponds to dp = 0; the subspaces for fixed
eigenvalues sp are spanned by the eigenvectors

|n)in = I‘D —~n,8p — n!n) . (39)
For fixed sp the Hamiltonian (36) has the tridiagonal form

Hiln)) = BIn - 1), + Bliln +1)s (40)
B = y(@E—-n+1)n. (41)

Frequency conversion and simultaneous duplication require a classical undepleted pump mode d at
frequency wg = w, + Wy — W, with interaction Hamiltonian

"= “Zm)‘:d + h.c. (42)

3. NUMBER-OPTIMIZED DOWNCONVERSION
The Hamiltonians (30) and (42) are complicated by the occurrence of the multiboson operators “EG)

and a:,',). An outlook at Eqs. (10) and (33) reveals that the G-photon amplification corresponds to
a x(¢*1) susceptibility and the duplication to a x¥. In the followings the G = 2 case—the simplest
to attain in practice—will be considered only. For (a'a) >» 2 the two photon operator ":z) can be
approximated as follows

ahy e 2ala+1)]t, ((a'a)>2). (43)
On the other hand, for dp = 0 the two-mode op‘erator azm) is simply
al,, =a'(a'a+1)7H8t,  (a'a=0'). (44)
Hence the Hamiltonians (30) and (42) become
B ~a?[2a'a+1) T ed+he  (PNA), (45)
H =a'(a'a+1)"¥tted+hc.  (PND). (46)

As a crude approximation we substitute the intensity-dependent factors in Eqs. (45-46) with their
constant average values and use the customary four wave mixing Hamiltonians

ﬁpwu = a'?cd + h.c. (PNA) ) (47)
Hewa = a'bled +he.  (PND). (48)

In the parametric approximation of undepleted classical pump d, Eqs. (47-48) correspond to the
interaction Hamiltonians

H;=a"%+hc.  (PNA), (49)
H =a'b'c+hec. (PND). (50)
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The interaction time is rescaled by v/, I being the intensity of the pump d: the relation between
the dimensionless time 7 and the real time ¢t (namely the length of the nonlinear medium) now reads

r=xOIt. (51)

The Hamiltonians (47) and (48) were already suggested by Yuen', who inferred the amplifying
performance from the conservation laws (23-24) and (37-38), with the assumption of complete
conversion of the input signal. However, we will show that complete conversion is never achieved,
apart from the case of one input photon. As an example in Fig. 1 the average output photon
number is plotted for Hamiltonian (48) versus the interaction time r, for both cases: number
duplicator ({na)o = {ns)o = 0, (nc)o = n,) and number recombiner ({na)o = (n4)o = n,, (n.) = 0).
An oscillatory quasiperiodic (or long-time periodic) behavior is evident, conversion never being
complete at any time: the ideal gain is not reached, and the unconverted photons contribute to
the output noise. Therefore, the saturating factors in Eqs. (45-46) are crucial to get complete
conversion. Semiclassically a similar saturating behavior o (1 + I)~? is obtained for interaction
of radiation with a two level system in the inhomogeneously-broadening limit or in the adiabatic-
following regime:® however, a full quantum treatment is still lacking and would require a wideband
analysis. Here we only consider the performance of parametric Hamiltonians (49-50) in achieving
approximate PNA and PND. In this case the interaction time r = . for conversion depends on the
input photon number n,

_ ) {nc)o, ({na)o = 0 : direct operating mode) , ”
™= (na)o , ({(nc)o = 0 :inverse mode) , (52)

which, in order to simulate the intensity-saturating low in Eqs. (45-46), should behave as follows
T.~n, b (53)

The conversion time (53) could be obtained tuning the pump intensity on the input photon number
n;: for n; varying in a wide range, this would require a suited feedback mechanism based on a
quantum nondemolition measurement of n,. In the following we give more accurate evaluations of
7., using either analytical methods (a mean field approximation) and numerical calculations. The
results obtained in the two ways will be compared and discussed in the end.

3.1 A mean field approzimation
In Ref. [10] a linearization procedure for parametric conversion has been proposed, where
Hamiltonians (49-50) are approximated in a selfconsistent way by the ideal ones (21) and (36).
As we will see in the followings, this approach is correct only in the limit of large input photons
numbers in the amplified/duplicated channels (i.e. a and b modes), namely it is suited to describe
the inverse operating mode only. The method allows evaluation of the conversion time .: its major
limitation is that it leads to exact conversion and, therefore, there is no systematic way to estimate
quantum fluctuations and nonideal gains. As s consequence, the direct operating mode cannot be
described in terms of the time-reversed transformation of the inverse mode, because in this case
knowledge of the output noise become essential. Therefore, in this section we analyze only the
deamplifier/recombiner case. '

The starting point of the method is to rewrite Hamiltonians (49-50) in a form similar to the
ideal ones (21) and (36), namely

H = f(ata)Ac + A'f(ata)c, (54)
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where

_Jlem (PNA),
—{ a1y (PND) (55)
and
_ [ (2z+3—(-1))t (PNA),
fl=) = { (z + 1)} (PND). (36)

The operator function f(a'a) will be treated as a c-number time-dependent effective coupling, to
be determined selfconsistently a posteriori. The Hamiltonian (54) is rewritten as

H; = f(ata)Ac' + f(a'a —v)A'c, (57)

where, in order to have a unified description of the two devices, the integer number v is used

1 (PNA),
v= { 2 gpND;. (58)

We write a mean field Hamiltonian taking the intermediate value f(a'a) = f(a'a — %) between the
two forms in Eq. (57) and averaging on the input state. One obtains

Hyr = F(na(7)) [Ac' +hec] , (59)
where

na(r) = (a'(r)a(r))o , (60)

f(z) = v (z + %) (61)

(the oscillating (=1)"(") term in Eq. (56) is neglected). In the Dirac picture the time evolution of
an operator O is written as follows

O(r) ~ exp (ifI,.,r) O exp (-—iﬁ,,,-r) , (62)

and

using the time-averaged Hamiltonian Ha,

- 1 /7 . 6(r)
Hav = ;/(; HMF(T)dT = T (AC’ + A’C) ] (63)
= . ’ ', 4
o(r) = [ F(na(r)dr (64)
The evolution of the operators A and ¢ takes the simple form
A(r) = Acosf(r) +icsiné(r) (65)
e(r) = ccos(7) + iAsin 8(r) . (66)
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Figure 1: Time evolution of the output signal (#,) (figures on the top) and of the r.m.s. output
noise /(A#n?) (figures on the bottom) for parametric conversion (Hamiltonian (50)) of input number
states with n, = 10. The two figures on the left refer to the number duplicator ((n,)o = (ns)y =
0,(nc)o = n.); those on the right to the number recombiner ({n,)o = (ns)o = n,, (n.) = 0). The
small circles enclose the conversion point corresponding to = = ..

We are now in a position to evaluate n,(7) selfconsistently. From Eq. (65) one has

na(r) = (AY(7)A(T))o = (A*A)g cos® 6(7) . (67)
For large input photons n; and v = 1 the expectation n4 can be approximated as
na = [na/2] ~n./2. (68)
From Eqs. (64) and (67) we obtain the following integral equation for n,(r)
na(7) = n, cos? () = n, cos? /0r f(n.(r'))tir' . (69)
Differentiation of Eq. (69) leads to
Vvdr = df (n.v cos’ 6 + -21-)-§ (70)
From Eqs. (65) and (69) one can see that complete conversion occurs at = 7, such that
8(r.) = g . (1)
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Figure 2: The best conversion time 7. for parametric Hamiltonians (49-50) (PNA on the left
and PND on the right). The squares are for the amplifier/duplicator, the circles for the
deamplifier/recombiner. The lines without dots represent the mean-field approximation.

After integrating Eq. (70) from 6 = 0 to § = § we find the conversion time as a function of the

input photon number =,
revb(med) (;’1—2) , (72
where K (k) denotes the complete Jacobian elliptic integral
K(k) = /0*(1 — kein?z) Hdz . (73)
For large numbers n,, using the asymptotic behavior K (k) ~ —log V1 =k for k — 1, one obtains
T. ~ %u'*n"* logn , (74)
which, a part from a logarithmic correction, has the same form of the preliminary result (53).

5. NUMERICAL RESULTS
The quantum evolution of input number eigenstates for the Hamiltonians (49-50) is evaluated
numerically, taking advantage of the tridiagonal forms (28) and (40), which now read

al?) = \/n(a —n+1)(s-2n+2), (s=s,), (75)
BY = a(s-n+1), (s=sp). (76)
80
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Figure 3: The maximum effective gain G. (corresponding to the conversion time 7. of Fig. 2)
for parametric Hamiltonians (49-50) (PNA on the left, PND on the right). The squares are for
amplification/duplication, the circles for the inverse operating mode.

The evolution of the output signal has been checked using the numerical results in Ref. {11]. In
Fig. 1 we report a sample of the evolution for the PND. The time-dependence is periodic or
nearly periodic for very low input photon numbers n,, whereas it becomes more and more irregular
(essentially irreversible) for increasing n,. Qualitative differences between the direct and the inverse
operating cases are evident. In the direct case the output signal exhibits maxima corresponding
to high noise level, whereas low noise occurs only for depleted signal. In the inverse case, on
the contrary, the first occurrence of a local maximum for the signal coincides with the absolute
maximum, whereas the relative noise is always well below the subsequent values (this gap being
an increasing function of n,). The conversion is never complete in both cases, however, it is more
efficient in the inverse operating mode, due to the low noise at the output. The conversion time 7.
has been identified as the time corresponding to the first local maximum of the signal (in the direct
operating mode this could be slightly lower than the absolute maximum). The same features in the
time evolution can be found for the PNA approximated by the conversion Hamiltonian (49), with
analogous differences between the direct and inverse operating modes.

In Fig. 2 the conversion time 7. is plotted against the input number n,, for both Hamiltonians
(49) and (50). The direct and inverse operating modes lead to two different curves, the former
corresponding to longer conversion times 7. (8 part from some features which are peculiar of the
deamplifier for low inputs n,, and are reminiscent of the fractional behaviour (68)). The mean field
approximation, which is pertinent only to the inverse operating mode, is reported for comparison.
A good agreement is found for large n,, better for the PND than for the PNA. For large n, numerical
best fits give power-low behaviours of the form 7. ~ n~2, with a ~ .4 or smaller.

In Fig. 3 the maximum effective gain G. (corresponding to the conversion time . in Fig. 2)
is reported. One can see that parametric conversion when used as a gain-two number amplifier
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Figure 4: Effective gain G. for the deamplifier with G = 2: circles and full line describe the
parametric conversion (Hamiltonian (49)); triangles and full line describe the intensity-saturating
Hamiltonian (45); dot-dashed line corresponds to the ideal deamplifier (5).

leads to an effective gain G. which is a decreasing function of the input signal n,, approaching the
value G. =~ 1.28 for large n,, well below the ideal gain. In a similar fashion the effective gain of the
duplicator G. = (n,(7.))/(n.(0)) tends asymptotically to G. =~ .78. The inverse operating mode,
on the contrary, behaves quite well, the deamplifier achieving the ideal G. = 1/2 guin and the
recombiner G. = 1 in the large n; limit. The deamplifier gain is compared with the ideal one (5) in
Fig. 4, where also the intensity-saturating case (45) is reported [notice that in the direct operating
mode the intensity-saturating Hamiltonians (45-46) lead to ideal behaviour].

Finally, in Fig. 5 the output Fano factors F. at the conversion time . are plotted. It is evident
that parametric conversion lead to noisy PNA and PND, with F. ~ n~? and exponent 3 slightly
lower then 1: this corresponds to an output signal-to-noise ratio which is slowly (logarithmically)
vanishing. The number deamplifier and recombiner are better approximated, with F. = .13 for
large n,: on the other hand, the intensity-saturating Hamiltonian (45) leads to vanishing F. for
large n; (F. is exactly zero for even n,.)

6. CONCLUSIONS

We end with some remarks on physical interpretation of numerical results. We have seen that
parametric Hamiltonians (45-46) are not good candidates for number amplification/duplication
devices, whereas they could be profitably used to achieve approximate number deamplifica-
tion/recombination. Here we emphasize that the source of noise in the simulated number devices is
the socalled spontaneous parametric emission.'? As a matter of fact, as explained in Ref. [11], the
Hamiltonians (45-46) are formally similar to the Hamiltonian of a laser amplifier: in particular, Eq.
(46) can be put in correspondence with the Hamiltonian describing a cluster of N two-level atoms
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Figure 5: The Fano factor F. at the conversion time . of Fig. 2 for parametric Hamiltonians (49-50)
(PNA on the left and PND on the right). The squares are for amplification/duplication, the circles
for the inverse operating case. The triangles correspond to the intensity-saturating Hamiltonian
(45).

interacting with one (resonant) mode of radiation
H xa'i_+al,, (77)

where J, = T¥, 0% are the collective spin-flip operators for atoms. In fact, the angular momentum
operators can be represented in terms of the two mode-operators b and c as follows

. . . 1
— bt = bt = = [t +
J,=bc', J_=bc, J.—2(cc bb),

(78)
N
? .
When operating as a PND the Hamiltonian (46) acts on input states with n, = ny: in the direct
operating mode one has (n,)o = 0 and (n.)o = ni, whereas in the inverse (n,)o = n, and (n )y =0,
namely |M| = J in both case: this is exactly the spontaneous emission limit for the parametric
converter (as opposed to the noisless coherent superradiant limit corresponding to M = 0). Thus,

in conclusion, both the output noises and the nonideal effective gains are signs of the spontaneous
parametric emission in the converter.

j=%(c'c+b’b) , J=

ACKNOWLEDGMENTS

We are grateful to R. Simonelli for numerical checks. This work has been supported by the Ministero
dell’Universita e della Ricerca Scientifica e Tecnologica.

83



REFERENCES

1 H. P. Yuen, in Quantum Aspects of Optical Communications, Ed. by C. Bendjaballah, O. Hirota,
S. Reynaud, Lecture Notes in Physics 378 Springer, Berlin-New York, (1991), p.333

2 J. M. Shapiro and S. R. Shepard, Phys. Rev. A 43, 3795 (1991)
8 G. M. D’Ariano, Int. J. Mod. Phys. B 6, 1201 (1992) see also reference therein
4 G. M. D’Ariano, Phys. Rev. A 45, 3224 (1992)

5 P. N. Butcher and D. Cotter, The elements of nonlinear optics (Cambridge University Press,
Cambridge, 1991)

6 G. M. D’Ariano, C. Macchiavello, and M. Paris (unpublished)

7 S. L. Braunstein, Phys. Rev. A 42, 474 (1990)

8 R. A. Brandt and O. W. Greenberg J. Math. Phys. 10 1168 (1969)

9 G. M. D'Ariano, Phys. Rev. A 41, 2636 (1990); Phys. Rev. A 43, 2550 (1991)
10 J. Katriel and D. G. Hammer, J. Phys. A 14, 1211 (1981)

11 D. F. Walls, in Quantum Optics, Proceedings of the Scottish University Summer School, 10th;
Edinburg 1969, edited by S. M. Kay and Maitland (Academic, New York, 1970), p.501

12 R. Graham, in the same volume of Ref. [12], p.489



N94-10578

AN EXACTLY SOLVABLE MODEL OF AN OSCILLATOR
WITH NONLINEAR COUPLING AND ZEROS OF BESSEL FUNCTIONS

V.V.Dodonov
Moscow Institute of Fhyesics and Technology,

14 Gagarin str., 140160 Zhukovskiy, Meoscow Region, Russia

A.B.Klimov
Lebedev Fhysics Institute,
Leninsky Frosgpect T3, 117924 Moscow, Russia
Abstract
We consider a model of oscilletor with normpolynomial
irteraction admitting exact solutions both for energy
eigznvalues in terms of zeros of Becssel functions considered
as fu~ctions of the continuous indesx, and for the

cocr-esponding eigenstates in terms of Lommel polynomials

Let us consider the following Hamiltonian,

H = wa a + x{;+[a+a + 1]-“2 + Ea+a + I]-“aa} . (1)

Here « and a+ are usual boson annihilation and creation ocperators, w
and A are pocitive real parameters (the generalization to complex
coupling constant x does not lead to any new result, since the phase
of X\ is trivially eliminated by the canonical transformation a - aetﬁ
preserving the energy spectrum!. If the mean nrumber of guanta 1is
close to zero, then (1) turrns intoc the Hamiltorianm of usual forced

cwiiiisator. In the opposite guasiclassical regime of large mean

. . P . . <2 Ly
r of euxcitations N = <a a* = 1 the substitution o = N TR tE

il

3
1]

bt
n

ade to the erergv-indeperndent inmteractiocr. Hamiltoniar

. = ACOSp, (2)
it

which ig in fact exact, since the expression inside the figure brac-

bets is rocthing but the Susskind-Glogower cosine phase operator [11]

which properties were discussed in detail in the known review by

Car-uths-gs and Nieto I2].

Expzrding the energy eigencstate |E¥ over the Fock states

¢ \°
L
\G\N\\' Qi
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B

|E: = 2 e |n> (%

n=0

and tating into account the known matrix elements of operatsors o  and

- cre can easily reduce the stationary Schroedinger equation to the

following set of coupled linear algebraic equations,

Ec = ¢
a) i .
. . (4)
wn + Afe +c ), n = 1
- 1h—4 vl
1t ie corvenient to introduce dimensionless variables

m
)
n

2 = Aw , o = Elo - (=)
Then normalized energy u is determined from the equation #(z2,4)=0,

where function & is the characterictic determinant of system (4):

—u 2 0 O O sx2nse
= 1-p = 0D [ R

El=,y) = O = 2-p 2 O sewss (5}
(e} 0 = T F weewe

Expanding this determinant over the elements of the first row one can
easily obtain the following recurrence relation,

Bz, L) = —pElz, p-1) —2 8=z, p=2)- (7)
Istroducing new function

Flz,u) = 2 P&z, (8)

one can rewrite (7)) as follows,

Foz, ) + Flz, u=2) = -2H-F(z, p-1). (9)
But this is the well known relation for Hessel functions [Z,41.

Consequently, the energy levels are determined by zerocs of Ressel

functiore in accordance with the eguation

2 _ (22 = 0. (10)

For small values of parameter

T

the well-known power series expansion

W

of the EBessel function leads to the equation

= -_ = 0. (11)
mtrCm—p
=0

For 2 » 0 the solutions of this equation with respect to u are

determined by the poles of gamma-function. Evidently, they reprcduce
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appro@imately the equidistant harmonic oscillator spectrum:s M X n 3

]

= 0,1,2,-«. Since all poles of gamma—functior are simpl=, with the

res:dues (—l)h/n!, the correctiorn to the n—-th energy 1level has the

2{n+42
order of =2 'z

~ 2 . - QZ(YH-i)
Hoox -2, H =n — =
O LAl

I/t F aeey nEL. (12)
Note that all corrections are negative.

For largevvalues of the coupling constant we can use the known
asvmptct:ic formula

1.7

(22) % (n2) *2cos(22 + nu/2 + n/4). , (13)

J—I—u

Then for |Ju| « |z| the spectrum is equidistant again, but with the
twice distance between the neighbouring energy levels:

X 1/2 + 2n —4z/n + 0z ). (14)

Here n is an arbitrary integer having the same order of magnitude as

the large parameter =z. Note that erergy values depend or the coupling

constant in a specific almost periocdic manner:

pn(z) X pn*1(27+ n/2). (1%)

Now let us look again at eq. (4!. Comparing it with different

recurrence relations for special functions given in ({3,431, one can

recocrnize that it is nothing but the equation for Lomme!’'s polvno-

mials (which are in fact polynomials with respect to 1/=2)

2 + n)

3 <22 + R {2d = Z————— F (2> (16)
jah e WA rn—1, =2 .,
Consequently,
re 2 -1
i et AR TR B § ol O PR 2L
M =N, R c-22> =N(u,2) 20", (17)
" e LICn=-810 N L-pD
1=0
where Nis,z! is the normalizing factor. For example, the first three
coefficients c:“)= c?ﬁ/N(p,z) are as follows,
A ]
~N N 5 a3
c;“) =1, c;”’ = u/=, c;"" = plp-1y/2% - 1 (1)

Taking inte account (12) we have, e.g., for the ground state

Moo
L-

o 4

(g ) (o 2
= 1, < = =2, Cz = =2, (19)

In conclusion let us discuss the correspondence between the

guantum problem under study and i*s classical counterpart described
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1

:m +he energy — phase canonical variables

E = %Cp? + g%, ¢ = arccos[quEE)Lq] (20)

with Hamiltonian
H = EF + \cosp - (21
Simce thies Hamiltonian depends linearly on the energy variable E, the

rarponical eguations of motion

IE-3t = IH- B, oot = —IH-OE (22)

cap Re found without difficulty for an arbitrary “potential” f(g):

ety = -t, ECt> = E_ + fCO> - fCpd. (23)

Howsve—, in  the guantum case just the "potential” cose seems

distinguished. For example, if one takes instead of (2) the interac-—

’ i T [cose]” (28)
tmzr i-z+mad of (&) and (7} one gets (Z = pu - 22}
- 0o =z 0 0 e
¢ 1—; O pd O s
Fra,u) = F=4 ] 2—; (] = I I (25}
o =2 O 3-; 0 Besses

N~ ~
Elz, W = —pBlz, p=1) + 22 (-1 E =, p=3) + 28 (=, p-® (26)
with unknown solution.
Althouch the physical meaning of the quartum medel with

Hamiltonian (1) is not clear at the moment /its 'nearest neighbour"”
H = E/2 + rcosg describes the Josephson junction), we rope that due

+c ite beavty it will find applications in future.
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Abstract

The quantum description of ligth propagation inside a planar waveguide is
given , looking in particular at the behaviour of the field inside a directional
coupler . Nonclassical effects are presented and discussed.

Introduction

Electromagnetic fields in optical guided wave systems are usually
described simply by using' classical Maxwell's equations, but there are cases in
which a quantum treatment is necessary.Three purely quantum phenomena are
known having no classical analogous; namely photon antibunching,
sub-poissonian photon statistics, and squeezing of optical fields. If problems
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connected with these phenomena or the evolution of photon statistics are to be
dealt with,a quantum mechanical treatment must be used.

Of course a linear system is not able to produce or change these
properties but a noniinear one is. For this reason,in the following the
Hamiltonian for a nonlinear optical waveguide will be derived,and its application
to some propagation problems will be considered.Although the Hamiltonian is
quite general,emphasis is given to planar structures only and a more suitable
approach to describe propagation fenomena is discussed.

One of the results of having the propagation problem treated in quantum
mechanical form is to allow for the possibility of studying how purely quantum
effects propagate in linear systems.We will show for example that a quantum
effect as squeezing is affected by the operation of switching in a linear structure
because of the phase changes involved in the operation.

2. Quantization of the radlation fleld

The recent experiments on nonclassical states of light have called for a full
quantum analysis of the electromagnetic field [1] especially in the cases of
propagation of the fields inside dipersive media.

We remember that the standard quantization method consists of writing the
Hamiltonian in a given volume V , demanding periodicity in space. For
propagating fields, the space evolution is then replaced by a time evolution, by
linking the space and time variables by the equation z= ct. The length of the
nonlinear medium is then replaced by an effective interaction time. Of course this
method has two main kmitations. The fit one is that , by identifying the space
evolution with time evolution we lose one variable and this formalism can
describe only c.w. operation : the second problem is that this procedure cannot
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be applied rigorously to a dispersive medium, where each frequency propagates
with different velocity.

However we remember that by using the Hamiltonian formalism and working in
the Heisenberg picture , the time evolution of &z, operator is given by

T

WL NN @

The G operator Is related to the wave flux of the Poynting vector [2].

Therefore a suitable way to quantize the radiation fleld to describe the
propagation fenomena is the one starting from the flux of the Poynting vector.
This leads us to the realization that the important quantity is the fiux and not ,
as usually is assumed with the Hamiltonian formalism , the enerdy density.

In this way instead of quantizing the field in a large volume and demanding for
spatial periodicity , it is necessary to assume a time periodicity T of the field ,
with the requirement that T must be large with respect to any relevant time .
Then instead of writing the field in term of spatial modes ( thus performing a
Fourler analysis of the space variable z into the wave vector K m ) it is possible
to write it in term of temporal modes ( thus performing a Fourier analysis of the
time variable t Into discrete frequencies ® m ) and space dependent
operators. The advantage is that the temporal modes remain the same inside
and outside the dielectric medium [3] and the space evolution of the mode
operator can now be obtained by means of the momentum operator: moreover
dispersion of the material can be included.
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By the help of this formulation the expression of the electric field is ( inside a
dielectric)

VI\ A A
E@t)= E*(zt)+ E(z}),
where the cross stands for ¢.c. and

@0 = 2 gpctna ot 1 (&2 omexp(- ko) 3

being &(zwm) and their conjugates form a set of localized creation and the
annihilation operators ,mm the field frequency , n(w) the refractive index at the ®
frequency , e o the dielectric constant and c the ligth velocity.

The number operator for the field becomes

A
N(zo,wm)= a* (zo.mm);(zo,mm) (4)
which represents the number operator of the photons of frequency ® m

passing through the plane 2= 20 during a period T , and the commutation
rules now become commutation at "equal space™:

fazown a* (2.ap] = 818 4*D (5)

and the & operator is defined as

(L Z(hkm) * (z0m&Z0m) (6)

where Kn= n(®0m) Qcﬂ is the wavevector of the field.
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3. Quantum mechanical description of propagation In a planar
waveguide

A planar dielectric waveguide is a medium whose dielectric permittivity
depends on one direction,parallel to which we shall assume the x-axis (s.Fig.1).
if this medium does not contain absorbing centers,if there is no
amplification of radiation,and if the permittivity is weakly dependent on the field
frequency o ,the electromagnetic field inside the guide is expressed in terms
of normal modes in the following form [4,5]

A(r)= 2A 01 (x) exp( 1§y .0), (6)

where B | is the wave-vector with componentsy and z (B).r= ky y + kz 2) of the
jth mode propagating inside the waveguide and f (x) is a function dependent
only on x, defined over all space, and determined by the waveguide structure.
Therefore each guided mode is defined by a fj vector at each wj frequency.

From the quantum thery point of view ( as pointed out in the previous
paragraph ,if the operator describing the field mode in a free space is given by
( note the operator is the one that obeys at the equal space commutation rules)

Azwy = e W= 3(0) o Kizg- it @
in a guided strucure it can be described as

Azw)= 26 = §0) o Bg~ hoit (8)
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and eq. (6) written in operatorial form becomes

A= ?m [3(2.0)1) exp(— ik H +c.c) 9)

whaere A g is a constant .

X {< WY
2 m
¥ = —
l M ?

Fig.1 A planar waveguide

We would like to remark that in the case of dispersionless material the time
evolution of the field operators( Heisenberg equation) is the same as the one in
space , i.e. the Hamiltonian operator and the momentum operator
approach provide the same results. This remark is particularly important when
we consider the quantum treatmen of a guided mode inside a guiding
structure, due to the fact that in general we propagate different spatial modes
of equal frequency and we are not obliged to take into account dispersion of the
medium if we assume a c.w. propagation.

The same kind of consideration is still valid if we study the propagation of single
or more modes inside a nonlinear planar waveguide with third order nonlinearity.

These cases have been extensively studied in the paper [5].

In the following we analyze the case of propagation in a directional coupler ,
which is one of the most interesting guiding devices , very important from the

point of view of its switch properties.
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4. Behaviour of a linear directional coupier when nonclassical states are
involved (squeezing)

The directional linear coupler consists in two adjacent and parallel
waveguides [ 5,6 ](channels ).When radiation goes through the
structure,exchange of power between the channels is possible because of the
evanescent field which is presant in the region between them.

In the frame of classical theory the coupler is studied by using the coupled
meode theory [5,6 )in which a perturbation polarization responsible for the
coupling contains the refractive index of the guides. Complete power transfer
occurs in a distance L= (x/2K, where K is the coupling constant
determined by the refractive indices of the structure; if the detuning parameter &
is zerothat is in the case of complete phase matching [6 ] ,being

= 2 (Pa-Bo) (10)

where B3 and PBp are the wavevectors of two modes of equal frequency
propagating in channel a and b respectively .If § is not zero the maximum
frakcgon of power that can be trasferred is proportional to

K52

From the classical equations for the complex amplitude for the directional
coupler,in the frame of the coupled-mode theory,with obvious generalization we
have the following Heisenberg equations for the operators,

da/dz = -iKbexp(i2 52),

db/dz = -iKaexp(-2i§ 2), (11
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where 2and b are the field annihilation operators in channel a and b
respectively .For the sake of simplicity we neglect damping terms because we
are interested in the coupling effect only;his is a good approximation in the
region of low temperature and optical frequencies. Without taking into account
dispersion the set of eqs. ( 11 ) is the same that we can write startimg from the
momentum operator with the substitutions t > zc and H-> cG

In this way we get the following solutions of egs.(11)

4= Caao+ Gabo b=Cobo+ Go @ (12)

where & and o are the input annihilation operators and
Ca= 6P cos(y2) - i84sin(y2)

Co= 6 B3cos(y2) + i84sin(12)]
= - iK% sin(y2) &*

Go= - iK% sin(y2 e ®*
where 72 = K+8%

To study the propagation of nonclassical field through the structure we use the
following characteristic function

CNB) = Tr(p exp(Ba" | exp{-B'a] = exp[ - MBI 2+ (B + SP2+BW -p" W]
(13)

which is able to describe a field which is not a pure coherent or squeezed
state,but has simultaneously squeezed ,coherent and chaotic features [ 7 ].In
eq.( 13 ) W= Wexp(i ¢ ) is the coherent signal,and M and S are related to the
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noncoherent part of the field.So for the vacuum state we have M= S= W= 0
;in the pure coherent state M=S=0, and for the chactic field W=S=0.
The state is a pure squeezed state if

M= Q= 0.5((4S + 1) -1)
S= exp(i ® ) cosh(r) sinh(r) (14)

r being the squeezing parameter [13 ].

A mixed state is given from a superposition of a pure squeezed state with
coherent signal W and a cahotic field described by the normally ordered
characteristic function given by eq.( 13 ) if

M= Q+ N,
(15)

where N is the noise photon number.

We shall suppose that the input statistics of light in both modes can be
described by the normally ordered characteristic function ( 13 ).Putting solutions
(12 ) into eq.(13 ) we can see that the truncated normally ordered output
characteri- stic functions will have the same functional form as the input ones with
new terms

Ma= MD 4 + M Gol?
Sa= G+ G
Was= W cC+ WP g, (16)

where the superscript (0) labels the input quantities,and similar expressions can
be found for the b-mode,by interchanging the subscripts a and b.

97



YT R 1 0

We are interested in finding expressions for the variances < (A Q) 2 , and
« AP)2 > (where O=54+5 and P=-i(a-3")).Inret(14) it

is shown that

<(AQ> =142M+S5+S
<(AP> =1+2M-S§- 8 (17)

Several interesting cases can be considered which depend on the way the
coupler is feeded.
Let us suppose first that a pure squeezed state enters channel b and a
coherent state (or vacuum) channel a. it can be shown in this case that for
L= n /2K and &= O we have

<ab)2>a= < (AP>w, < AP)2>a= < 0OBw .
< a8)2>4= < (AP p= 1.

(18)
This means that at the output of channel a we have an opposite squeezing than
at the input of channel b,while the output in channel b shows no squeezing.

A related situation is obtained when two opposite squeezed fields enter the
two channels in the same conditions as in the previous case.ln this case
squeezing is preserved in both channels because the field entering channel a
comes out of channel b with opposite squeezing and the same happens with
field entering channel b.At intermediate lengths of the coupler the squeezing is
not completely preserved.

A very interesting role is played by the detuning parameter . In general [14]
f &= 0 some noise is added to both channels and squeezing is reduced, and
for some special values of 8, noise is absent. Let us consider for exampie
the case in which 8= ¥3 K. . In this case y= 2k and for the same coupler
length L="1/2k if a squeezed field entered channel b and a coherent or vacuum
field channel a then we have at the output
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< (Ab)2>a = < (Ah§a= 1.
< A0)®5p = < (ADS .
< @AaP¥2>p = < (Ah’> 00. . (19)

We can see that changing the detuning parameter from zero to V3K
switches from one channel to another.This result is rather interesting for the
purpose of measurement.The squeezed state is detected by interfering it with a
coherent reference light and looking at fluctuations.The switching behaviour just
described allow to preserve both the squeezed state and its reference beam.

5 Directional and contradirectional coupler with modes with small
different frequency propagating inside

We have studied the problem of propagation of radiation in a coupler
assuming two different frequencies inside the channels , with the hypothesis that
each channel can support one only guided mode : this is possible if the two
frequencies are quite similar. In general for a coupler the more realistic
description of the field propagating inside all the structure is the one which takes
into account the superposition of the single modes propagating in each channel
( so called supermodes); in the case of different frequencies this approach is
particularly convenient and it is the one that we have adopted but in its
Quantum analogous, i.e. introducing this concept in the statistical dependence of
the modes supported by the structure.
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The motion equation of the operator describing the propagation inside the
structure is given by ( Heisenberg form)

WD _ i

az = F [&z)' &z)l ’ (20)

where | is the index corresponding to the mode ( j= 1,2) and this equation is
N

related to the momentum operator G , that for this case is given by

&2 = r;gk;%f(z) 2 +h( B1* (@ @D+ he), (21)

where k=P %’1, is the mode wave vector , x Iis the coupling constant , which

depends on the refractive index (w;) distribution inside the coupler . It is very
interesting to observe that the é operator looks like the one of a second order

nonlinearity for a bulk material.
Using the approach of the supermodes we can describe the two fields of

different frequency supported by the strucure as
11> = 27 % (| 1>+ 11| loup + 21| 200> )
12> = 272 (2i>+ 2] Toup + L2l 20up ) (22)

being ujx a function related to the transformation law of the coupler ,
containing all the informations about the structure , such as the coupling
constant , the detuning parameter , etc. ( see functions C ap and G ap of the

provious paragraph ).

To follow the statistics of the field we start from the characteristic function ( the
antinormal one) from which it is possible to derive all the factorial moments and
the photon counting distribution. As in the previous paragraph we suppose the
input state is a superposition of a coherent state and noise , including

squeezing .
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Due to to the hypothesis of the supermode we can write the charateristic
function for all the fields P1 and Bz ., Ca(B1,B2) , but we can follow also the
behaviour of each separate mode Ca(B) [ 8 ] :

Cain (B1.62) = expg_ﬁ‘ - Bin | BA%+ 3 (Gl Bf + €. + By - c0) +

(noise) ( squeezing) ( coherent)
+ (- Bi2pi B2 + Ciz, P12 + c.c)))).

( interference of noise ) (23)

The output characteristic function is of the same form as the input, where all the
features of the coupler are inside the B and C coefficients of the eq.(23).

Several cases of inputs states have been studied, such as coherent , two-photon
coherent , two-mode squeezed states and all factorial moments have been
calculated [8] finding as the detuning parametr plays a very important role on the
evolution of the fileds : it adds addidional noise if it is non zero [8].

It is interesting also to follow the photon counting distribution which put into
evidence the switch properties of the structure always starting from the hypotesis
of supermode supported by the coupler . An example is shown in Fig.2 , where
the detuning parameter 8 is zero, the input state in the first channel is a two
photon coherent state in the first mode |, with a " small amount of
squeezing” ,and a coherent state in the other mode . The picture shows the
marginal photon number distribution in the channel 2 ; at a suitably distances the
sub-Poissonian behaviour turns super-Poissonian, which characterizes the field
in the squeezed vacuum state: this confirms the switching of ligth of certain
photon statistics from one mode to the other one.
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Fig.2 - The marginal photon number distribution for 8 =0 and K =i for the
channel 2

Conclusions

The propagation of ligth in a linear directional coupler can be studied without
taking into account the dispersion of the dielectric constant until c.w. field
propagation is considered; of course dispersion must be taken into account in
non stationary cases and when the structure of the propagating device supports
different frequencies.

The ability of the coupler to switch from one channel to the other by introducing a
phase lag allows to change the squeezing directions, until the &  parameter
is of suitably values; in general a detuning different from zero reduces the switch
properties of the coupler and adds additional noise to the propagating fields. This
effect is in turn evident also on the photon counting distribution.
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NONPERTURBATIVE METHODS IN THE PROBLEM OF
MULTIPHOTON l‘.‘.XCITA{IOII\II ’I(‘)F ATOM BY SQUEEZED
IG

A.V.Belousov and V.A .Kovarsky
Institute of Applied Physics Acaderny of Sciences of Moldova
Kishinev, 277028, Moldova

Abstract

The multiphoton detectors for the strong squeezed light vacuum are considered. Te re-
sult is compared with the perturbation theory. It is shown that as the degree of squeesing is
increased the statistical factor decreases.

Multiphoton transitions in atoms due to squeezed light were analyzed for the first time by
Yansky and Yushin [1] by using perturbation theory. On the other hand, at present parametric
generators of squeezed light are discussed [2]. They allow us to obtain high density of photons
N ~ 10%° —~ 10* in resonator with volume V ~ 1cm?® for stored energy density > 1J. Although
experimentally such photon densities are not reached, it is of interest to describe physical processes
in atoms interesting with intensive squeezed light. For the squeezed vacuum [0 >,, as is known,
N =,< 0]a*a|0 >,= |v|*(a*(a)~ are operators of appearing and disappearing of quantum of
electromagnetic field), v = |v|e*? is squeesing parameter of Stoler unitary transformation [3, 4] of
operators a*(a) to the new variables of squeezed field 6* () :

b = pa+vae®
bY = prat+viau)f - v =1 (1)

For the squeezing degree v ~ 10° — 10!! the criteria for application of perturbation theory
methods are not satisfied. In fact, let us coincides two level system with nonzero average dipole
moment d in the excited state (2) (neglect for simplicity the dipole moment in the ground state (1)).
The characteristic theory parameter o appearing due to multiphoton transition on the degenerate
level (2) has the form (5]

p = Fdfhw (2)

where F is the amplitude of the intensity of electromagnetic field with frequency w. Parameter
p > go (qo is the number of photons participating in the transition) is reached for N ~ 10%° —
10%(go ~ 3 = 5,d ~ 10D).

In the paper [6] the statistical factor x5y = W(? /W) was calculated for the multiphoton
transition on the degenerated level of hydrogen atom for the source of gauss electromagnetic field
(G) and pure collerent source (§). It was shown that with the increase of radiation intensity the
difference in statistical properties of multiphoton excitation of atom disappear. The expression was
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received for the probability of coherent multiphoton transition in the presence of probe radiation
with intensity F and frequency Q> w:
a, F*

weQ) = —;:—,;—-J;(p) (3)
where go = (A — AQ)/Aw, A is electron excitation energy, 7y is damping constant of excited
electron state, J,.(z) is the Bessel function of real argument. Using the formula (3) gives us
methodical advantage because it permits to realize the rearrangement of multiphoton process
with the frequency of probe radiation. Let us consider the statistical factor x(s5y = W) /W@,
where W7 is the transition probability under the action of squeezed light. S - matrix formalism
is used for calculating W¥. Confining to the second order of perturbation theory on the probe
radiation. We have:

&12 }'2 +00

Wo(@) = 22 dt expligowt — 1]I(¢) (4)

where I*(t) is generating function of transition probability:
I'(t) =< G(t) >,
The evolution operator G(t) satisfied the motion equation:

hG(t) = [g(t)a+ g"(t)a*]G(t); G(0) =1
(5)
g(t) = ive™™* v = dyp(2xhw/V)H?

The brackets < --- > in (5) denote the averaging over squeezed state, d;; in (5) is dipole moment
in electronic state (2), dz; = 10eqao for the level with the main quantum number n = 3(aq is the
Bohr radius, e, is the electron charge). The solution to (5) may be presented in the following
normally ordered form [7]:

G(t) = eA(t)e—B‘(t)a"'eB(t)a.
- pt
Be) = -5 [ dra) ©)
1/t n
Alt) = —?/dn/ drag(m)g*(m2)
0 0

Let us use back transition to (1):

a = ub—vub*
at = ubt —-u'h

With the Backer - Hausdorff transformation

eA. B eAtE e HAB]

(A4, B],A] = [[A B],B]=0
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it is easy to recieve the following expression for the generating function I®) of quantum transition
under the action of squeezed light

e = 170), < ﬂ|e-<8v+8-»)b+ BB g s,
I(()')(t) = exp{—ll/l IBP uy +CC)} (7)

The value B characterizes the initial coherent siate |§ > . In the case of squeezed vacuum we
have I)(t) = I{)(t). The received exact expression for the generating function J\*)(t) does not
permit to make analytical calculation of the transition probability and creates certain difficulties
for numerical calculations. This expression differs from the known formulas in (7,8] obtained
in perturbation theory in two positions. Firstly, in (7) the reemitting of photons is taken into
account, secondly, anomaly correlation functions with nonequal number of operators a and a are
not discarded. The first condition for the strong field is strictly necessary. The second condition
may be used for both weak and strong fields, as will be shown below. Taking into consideration
the remarks let us simplify the common expression for the transition probability. Present formula
(6) in antinormal form and rewrite I‘(, t):

Ig:) = I8 E (-1 ')2 lBlZm , < olama+mlo >, +
m=0
e I8P Z: (- 1) ) _pmpr < Olana+mlo > (8)
m#n

The presentation of the evolution operator G(t) in antinormal form is caused by simplicity of
calculations, for example:

s <Olaa*|0>,=1+ )P =|u=N+1

The last term in (8) is the contribution of anomaly correlation functions and do not gives the
contribution in multi-photon processes. Thus, we leave the first member in (8). We find:

K0(t) = e WP1BP . (| B| ulv]) (9)

where I;(z) is modified Bessel function. Let us consider the photon density |v| > 1 corresponding
to perturbation theory. In this case (see Appendix) it may be shown that statistical factor (x(,s))

wie)
X(s6) = 7G) = (2go — ! (10)

This result coincides with the known conclusion in [1]. In Fig.1 the calculation of statistical factor
X(s5) In nonperturbative a.pproach is given. Dashed line corresponds to perturbation theory. For
comparison the same Fig.1 gwes the statistical factor x(gs). Naturally, near field intensity which
corresponds to the suppression coherent multiphoton excitation effect [10], the statistical factor
increases drastically, which creates additional possibilities for experiment.
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Appendix

Let us use the expression for the multiplication of coherent state | > and squeezed state | >,

<alf >,= —e ——{joi* + +-a" 4+ —p)+ -
18 7 xp {5 (lal" + 18] “ pﬁ) " A}
Rewrite A,..», a8

Apm = %/J)ala’lzm' + < 0|C¥777>7 |2=

= l/ dze"z"‘Io(xM)
- HJo LB
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(®a = d(Rea)d(Ima) - is the measure of integration in complex plane a. So, the generating
function may have the form:

1 o0
I(‘)(t) = —/ dze"Io(zM)Jo(ZlBI\/E)
’ B Jo “
After calculating this integral we obtain the generating function (9). Let us use the summation
formula for the Bessel function [11]: :

+00

Jo(2a sin a:/2j = E JZ(a)e**

k=—oc0

Let write the expression for the multiphoton transition probability W(*) under the action of the
squeezed hght.:

1 1
WO~ 2N Foblgo—m)~ ~F,
i‘; (QO ) " ®

here we denote:

Fp =/ dzc"‘[o(z’%l-).];@\/a_z)
0

a = v/(hw)?
The last integral is known [11]. We receive:

1 a® — 1 [v]
0 o = ¥ iy2k t
W~ o & TR () Rk + )

X 2F3(g0+1/2,q0+ 2k + 1,90 + 1, 20 + 1; ~4a),

where :F, is the common hipergeometrical series. At g < 1, 2F; ~ 1. We use the integral
representation for the factorial. It is possible to sum up the series:

— 1 FPa(w)

W(a) ~ (a“)m
go!

Pe(u) is the Legandre polynomial. In the approximation [v] > 1 (u > 1). Let us use the

asymptotic expression [11]:

2g0 — 1)
Po(u) = 2=V o

We receive:

290
W) A, (—(G;T)z(zqo - )t = WE(2¢, — N
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SQUEEZING IN PHASE-CONJUGATED RESONANCE FLUORESCENCE
Henk F. Amoldus

Department of Physics, Mendel Hall, Villanova University, Villanova,
Pennsylvania, USA, FAX: 215 - 645 - 7463, bitnet: arnoldus@vuvaxcom

Emission of resonance fluorescence by an atom near the surface of a four-wave mixing phase
conjugator is considered. The dipole radiation field, regarded as a Heisenberg-operator field, is
decomposed into plane waves with the aid of Weyl's representation of the Green's function for the wave
equation. Each plane-wave component which is incident on the surface of the nonlinear medium, is
reflected as its phase-conjugate image. Summation of all reflected plane waves then yields the phase-
conjugate replica of the incident dipole radiation. This field adds to the radiation which is emitted by the
atom into the direction away from the medium. The condition under which squeezing occurs in the

emitted resonance fluorescence is investigated.

L. INTRODUCTION

Squeezing in resonance fluorescence from a two-state atom was first considered by
Walls and Zoller.l They derived conditions on the optical parameters for which the
emitted radiation would exhibit squeezing, and it appeared that only for a very limited
range of the parameters squeezing could occur. On the other hand, squeezed states of the
free electromagnetic field can be generated through four-wave mixing as two-photon
coherent states.2 In this paper we consider a combination of these two processes: a two-
state atom with transition frequency ®, is close to the surface of a four-wave mixer in
the phase conjugation setup. The nonlinear transparent crystal is pumped by two
counterpropagating laser beams with frequency @, as shown in Fig. 1. Then, an
incident plane wave with frequency ® is reflected as a wave with frequency 2w, - o,
and this wave counterpropagates the incident wave. This device will be referred to as a
phase conjugator (PC). When an atom in the neighborhood of this PC emits
fluorescence, then part of this radiation will be incident on the PC, and will be reflected
as its phase-conjugate replica. The total radiation field then is the sum of regular
fluorescence, which is emitted directly into the direction of the detector, and the phase-
conjugate image of the incident field. In addition, we shall assume that the atom is
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driven by a laser with frequency ®, and this field propagates parallel to the surface of
the crystal.

) 20, -
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P
. ©
Fig. 1. Geometry of a four-wave mixing phase conjugator.
II. DIPOLE RADIATION
An electric field E(?, t) has a Fourier transform, defined as

Ef 0)= .[:, dt e E(%,t) (1)

In terms of this transform, the positive-frequency part of E(7,t) is defined as
B O = — ) “doe®EF,0) @)

2n -0

and the total field can then be written as

EF ) =EFE 0™ +Hec. (3)
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Here, the field is a quantum operator field, and the t-dependence signifies the Heisenberg

picture.
For a (quantum) dipole [i(t), with Fourier transform fi(®), which is located at

position h, the Fourier transform of its electric field is given by

Y 1 ik|F-h

Bp(F, 0) = (k%) +[fi(@) s VIV}-

IT-h

C))

with k =w/c>0. The subscript p indicates that this field is the particular solution for a
dipole in empty space. We shall assume that the plane z = 0 is the surface of the
medium, and that the atomic dipole position vector is given by h= h€é,,h>0. In order
to obtain the field reflected by the PC, we expand the dipole field into plane waves.
Then for each wave its phase-conjugate image is a counterpropagating wave, multiplied
by the appropriate Fresnel coefficient, and shifted in frequency according to the rule of
Fig. 1. The decomposition of the field Ep(?,(o) is accomplished by using Weyl's
representation of the Green's function for the scalar wave equation:

elk|l'—h|

i S T
= da dg = exax+1By+mz—hl , 5
|T—-h| 2mJ-e I—“ B‘Y ©)

where v is given by

k2 _ (12 _ BZ
. 2,.02_+2 ©
iyal+p? -k
It is understood that we take the form for which the argument of the square root is
positive. When we substitute (5) into (4) and carry out the V operations, then the result
is the desired expansion into plane waves. The polarization of the waves is determined
by the dipole operator, and this has to be decomposed into surface- and plane
polarization components. The details of this lengthy calculation can be found in Refs. 3
and 4. Furthermore, we have to make an asymptotic expansion in order to find the field
in the radiation zone. This was done with the method of stationary phase.d
Subsequently, the inverse Fourier transform has to be calculated, to obtain the positive-
frequency part of the field. The final result for the radiation field, evaluated at the
position of a detector, located under an angle 6 with the normal to the surface, is
—-io,T

—~ 2 - -
E(F, 00 = 22 N #(F e )} ©)
4ne re

113



Here, © = (h/c)cos8, o, is the atomic transition frequency, and the Heisenberg operator
M(t) is given by

M(t) = L) —P* e 2% i) ®)

The positive-frequency part of the dipole operator is proportional to the atomic lowering
operator, and the negative-frequency part is proportional to the raising operator.

II. DRIVEN ATOM

Now assume that the atom is irradiated by a nearly-monochromatic laser beam, with

an electric field of the form
B, (t) = B, Re§ e @) (9)

The phase ¢(t) is a random process, which accounts for the laser linewidth. We take the
phase to be the independent-increment process, leading to a Lorentzian laser lineshape
with a width equal to A. This field couples to the atomic dipole as —fieE_ in the
Hamiltonian, giving rise to stimulated transitions between the two levels. The equation
of motion for the atomic density operator G in the rotating frame, and averaged over the
stochastic laser phase, can readily be solved. For the matrix elements we obtain:

1 QIn+ARX(A +17)
2 Q§n+A(1+P3)(A2 +n°)

1 A(A-in)
<elolg>=-=Q
018 >= =3 3 s A+ P& +10)

<elole>= (10)

(11)
Here we introduced the notations: A =0y —®,,N= A+A(1+ Pg) /2, and Q, =|Q|, with

Q the (complex) Rabi frequency of the transition, A the Einstein coefficient for
spontaneous decay, and Py, the absolute value of the Fresnel reflection coefficient.

IV. DEFINITION OF SQUEEZING

The electric field of the emitted radiation is given by Eq. (7). The slowly-varying
amplitude of the resonance fluorescence, with respect to the incident field, is given by6

E (1) = E()Pel @0 + Hee. (12)
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with E(t)*) the projection of the field from Eq. (7) onto a fixed polarization direction.
Angle o can be varied in an experiment. For a =0 or oo =n/2 this corresponds to the
in-phase and out-of-phase quadrature component of the field, respectively. The
Heisenberg uncertainty relation for quadrature fields with different values of o is

AEG()AEL(1)2 1< Ea0.EaOI> (13)
and with Eq. (12) this becomes

(AEL (2 (AL () > <[EM®,EMO 1> sinf(a-a') . (14)
Then we define the field E (t) squeezed, if

(AEo (1) < [<[E@)MEMD1>) (15)

holds. From Eq. (14) it follows that when E(t) is squeezed for a certain value of .,
then the quadrature component of the field which is 90° out of phase with this E,(t)
must have enhanced fluctuations.

As a measure for the amount of squeezing we introduce the normalized quantity

s = (L) I<[E()™, E()7]>|
- < Eé >

, (16)
so that squeezing occurs under condition
s<0 a7

V. CONDITION FOR SQUEEZING

The squeezing parameter s can readily be evaluated, given the solution for the atomic
density operator ©. It appears that parameter & can be chosen, such that it minimizes s,
but this choice depends in a complicated way on the phase of the atomic transition dipole
moment, the phase of the Rabi frequency, and the normal distance between the atom and
the surface of the medium.” For this optimum value of o, parameter s is found to be

o1 A(A?+1?)
T+ BHIQn+ A +PIYAT +1h)F
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x[Q2(A+1- B2 M)+ AlL- B (&7 + )] (18)

Therefore, squeezing occurs when the following condition on the optical parameters
holds:
(1+PHQIN+ A+ P2 YA +nP)P <

<A@+ Q2 A+II-RAm+ AlL-B (& 4] o

If we set Pg =0 in Eq. (19), then we recover the result for a free atom.8 When we set
Qg =0, which corresponds to the case without the driving laser, then it is easy to verify
that in this situation squeezing never occurs. Figure 2 shows the region were squeezing
occurs, as a function of the laser power and the phase-conjugate reflectivity, and for zero
detuning A and laser linewidth A.

QLA

0.4

0.2

0 1
0 0.04 0.08
P
Fig. 2. Squeezing occurs when the reflectivity and the laser power are such that the

corresponding point in this plane is within the loop.
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Abstract

An historical account is given of the circumstances whereby the uncertainty relations were
introduced into physics by Heisenberg. The criticisms of QED on measurement-theoretical
grounds by Landau and Peierls are then discussed, as well as the response to them by
Bohr and Rosenfeld. Finally, some examples are given of how the new freedom to advance
radical proposals, in part the result of the revolution brought about by “uncertainty,” was
implemented in dealing with the new phenomena encountered in elementary particle physics
in the 1930s.

1 Introduction

I must thank the organizers of this conference on Squeezed States and Uncertainty Relations for
the kind invitation to speak here. For some years I have studied and written on the history
of modern physics, and so I assumed that I was to speak on some topic in that field. Let me
say why a talk on the history of physics may be relevant, and why I have chosen the title as I
have. According to a Greek historian of the period just before the Christian era, Dionysius of
Halicarnassus, “History is philosophy from examples.” But why should physicists care anything
about philosophy, by examples or otherwise? Because physics was and is natural philosophy, and
never more so than when we deal with uncertainty relations.

I will begin by discussing the general significance of the Heisenberg uncertainty relations, how
they entered physics, and what interpretational (i.e., philosophical) problems they were intended
to solve. I will then mention the criticisms that Lev Landau and Rudolph Peierls addressed
to the measurement problem in QED, criticisms which led Niels Bohr and Lon Rosenfeld to
attempt to justify the real existence of quantized electromagnetic fields. But I will not be so
foolhardy as to review this subject in technical detail, when I am in the presence of so many
experts on quantum optics. Instead, I shall ask how the establishment of a quantum mechanics
that accepts the impossibility of exactly describing an atomic system in classical terms, influenced
the thinking of physicists as they tried to understand the phenomena of subatomic, i.e., nuclear
and subnuclear, systems. For, after the introduction of “uncertainty,” physicists felt permitted to
advance hypotheses that would have been unthinkable before the quantum mechanical revolution
of 1925-26.

In particular, I shall discuss some bold developments during the 1930s in quantum field theory
and in nuclear and cosmic ray physics, three subjects whose confluence gave rise to the new field
that is now called elementary particle physics. [1]
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2 The Origin of the Uncertainty Relations and of Com-
plementarity »

In a recent biography of Heisenberg by David Cassidy, entitled Uncertainty, the author begins a
chapter, which is called “Certain of Uncertainty,” as follows:

On March 22, 1927 Werner Heisenberg submitted a paper to the Zeitschrift fuer
Physik entitled “On the perceptual [anschaulich] content of quantum theoretical kine-
matics and mechanics.” The 27-page paper, forwarded from Copenhagen, contained
Heisenberg’s most famous and far-ranging achievement in physics-his formulation of
the uncertainty, or indeterminacy, principle in quantum mechanics. Together with
Bohr's complementarity principle, enunciated later that year, and Born’s statisti-
cal interpretation of Schrdinger’s wave function, Heisenberg’s uncertainty principle
formed a fundamental component of the so-called Copenhagen interpretation of quan-
tum mechanics—an explication of the uses and limitations of the mathematical appara-
tus of quantum mechanics that fundamentally altered our understanding of nature and
our relation to it ... [This] marked the end of a profound transformation in physics
that has not been equalled since. [2]

The development of quantum mechanics by Heisenberg, Born, Jordan, Bohr, Schroedinger,
Dirac, and others in 1925-26 marked the end of a period, beginning with Planck’s introduction
of the quantum of action in 1900, that was characterized by efforts, sometimes described as
“desperate,” to apply the well-established Newtonian particle and Maxwellian wave concepts,
even if modified by Einstein’s relativity and restricted by the quantum rules of Bohr-Sommerfeld.
But quantum mechanics entailed a whole new epistemology. Common-sense notions of causality,
separability, locality, visualizabilty, and measurability demanded, at the least, reinterpretation,
and perhaps utter abandonment at the quantum level. Heisenberg’s uncertainty principle lay at
the very heart of all this consternation and excitement. How did it first appear?

After Born, Jordan, and Heisenberg set out the principles and methods of matrix mechanics,
Schroedinger introduced wave mechanics, and soon proved that the two very different approaches
would always lead to the same predictions. (The equivalence of wave and quantum mechanics was
independently shown by Wolfgang Pauli.) This immediately raised the old spectre of the wave-
particle paradox in a new context, as did the experiments of 1927 on electron diffraction. (However,
histories of quantum mechanics emphasize the theory, and they do not seem to take much notice
of the latter.) After 1927 it became necessary to take seriously the matter waves of Louis de
Broglie, and to explain how the de Broglie-Schrdinger wavelike electron could be the same object
that leaves a well-defined track in a Wilson cloud chamber. Bohr and Heisenberg, then Bohr’s
assistant in Copenhagen, had been very concerned about this paradox the previous year, and to
help clear up the matter, Bohr invited Schroedinger to visit them. Accordingly, Schroedinger took
the train to Copenhagen from his post in Zurich, in October 1926. The Austrian physicist still
adhered to a “realist” view of electron waves, and rejected any notion of “quantum-jumping,” that
is, the transfer of energy in discrete amounts, rather than continuously.

By all accounts [4], poor Schroedinger was attacked so vigorously by the usually congenial
Bohr that he became ill and took to bed. Bohr, however, pursued him even into the sickroom,
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and would not allow him to rest. Nevertheless, Schroedinger left Copenhagen without giving up
the reality of his waves and still refused to concede the existence of quantum jumps.[4] According
to Heisenberg, the result of the visit was a continued preoccupation by Bohr and himself with the
problem of interpreting the quantum theory. As Heisenberg described it:

For all that, we in Copenhagen felt convinced toward the end of Schroedinger’s
visit that we were on the right track, though we fully realized how difficult it would be
to convince even leading physicists that they must abandon all attempts to construct
perceptual models of atomic processes. During the next few months the physical in-
terpretation of quantum mechanics was the central theme of all conversations between
Bohr and myself ... Since our talks often continued till long after midnight ... both of
us became utterly exhausted and rather tense. Hence Bohr decided in February 1927
to go skiing in Norway, and I was quite glad to be left behind in Copenhagen, where
I could think about these hopelessly complicated problems by myself. [5]

Recalling a conversation with Einstein, who had maintained that it was only the theory which
decides what!we can observe, Heisenberg began to question what we really see when we examine
an electron track in a cloud chamber:

In fact, all we do see in the cloud chamber are individual water droplets which must
certainly be much larger than the electron. The right question should therefore be: Can
quantum mechanics represent the fact that an electron finds itself approximately in a
given place and that it moves approximately with a given velocity, and can we make
these approximations so close that they do not cause experimental difficulties? A brief
calculation ... showed that one could indeed represent such situations mathematically,
and that the approximations are governed by what would later be called the uncertainty
principle of quantum mechanics.[6]

Upon Bohr's return to Copenhagen, there was “a fresh round of difficult discussions,” in which
Bohr insisted that the correct solution was to be given by the principle of complementarity. “But
he soon realized,” said Heisenberg, “ ... that there was no serious difference,” and that the main
problem remaining was how to convince other physicists of the new way of looking at the world.
That would not be easy. Comparing the scientist’s voyage of discovery with that of Columbus,
Heisenberg said:

In science, too, it is impossible to open up new territory unless one is prepared to
leave the safe anchorage of established doctrine and run the risk of a hazardous leap

forward ... When it comes to entering new territory, the very structure of scientific
thought may have to be changed, and that is far more than most men are prepared to
do. [7]

For a brief period, Bohr and Heisenberg had had a falling-out, since Heisenberg wished to
base his uncertainty relations entirely upon the particle viewpoint of matrix mechanics, while to
Bohr the indeterminacy was related to the necessity of including in the discussion the comple-
mentary wave aspect of matter and of radiation. However, the two had reconciled their views
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by October 1927, when Bohr gave a major address at the Fifth Solvay Congress in Brussels, es-
sentially repeating a speech that he had made a month earlier at Como, Italy at a conference
on the centenary of Alessandro Volta. At the Solvay conference, there began the famous and
long-lasting‘ Bohr-Einstein debates on the interpretation of quantum mechanics, the forerunner of
the Einstein-Podolsky-Rosen arguments and Bohr’s reply. [§]

3 The 'Measurability of Quantum Fields

In the spring of 1929, Heisenberg gave a set of lectures on quantum theory at the University of
Chicago, a major portion of the lectures being concerned with a critique of the wave and particle
concepts in interpreting experiments on Wilson photographs, x-ray and electron diffraction, etc.
He also analyzed the spreading of wave packets, and he obtained uncertainty relations for elec-
tromagnetic fields, e.g., those holding for the simultaneous measurement of a component of the
electric and a compnent of the magnetic field, both being measured in the same volume element.
His conclusion was that: “After a critique of the wave concept has been added to that of the
particle concept all contradictions between the two disappear, provided only that due regard is
paid to the limits of applicability of the two pictures.” [9]
In his Chicago lectures, Heisenberg gave three “proofs” of the relation

ke

AE.AH, > (_61)_4’ (1)

for the fields averaged over a cubic cell of side §l. However, as shown later by Bohr and
Rosenfeld, due to the presence of a é- function involving the time difference in the commutator of
two field components, the inequality (1) is ambiguous. When the averaging is more appropriately
done over a space-time region, rather than space only, the right-hand side of (1) becomes zero.
[10] Bohr and Rosenfeld concluded: “From this it follows that the averages of all field components
over the same space-time region commute, and thus should be exactly measurable, independently
of each other.” [11]

The work of Bohr and Rosenfeld was in large part a response to a criticism of QED, based
on measurement theory, that had been made by two very young (and rather brash) theorists,
namely Lev Landau and Rudolph Peierls. In 1929 Landau was visiting physics centers in Western
Europe on a grant from the Soviet Union, spending some time with each of Ehrenfest, Pauli,
Heisenberg, Rutherford, Kapitza, and Born. However, for the most part he stayed in Copenhagen
with Bohr, who (we know from his correspondence) was at that time concerned and, rather
uncertain, about the uncertainty relations for two electromagnetic field components. [12] Visiting
Zurich at the beginning of 1930, Landau began working on problems of QED with Peierls, who
was then Pauli’s assistant. In December of 1930, Landau again visited Zurich, and he and Peierls
wrote a paper arguing that QED was essentially meaningless, because a fundamental limitation
made the measurement of electromagnetic fields impossible in the context of quantum theory.
Obviously, this paper was intended to (and did) generate a major controversy. [13]

According to Rosenfeld:
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There was indeed reason for excitement, for the point raised by Landau and Peierls
was a very fundamental one. They questioned the logical consistency of quantum elec-
trodynamics by contending that the very concept of electromagnetic field is not sus-
ceptible, in quantum theory, to any physical determination by means of measurements.
The measurement of a field component requires determinations of the momentum of
a charged test-body; and the reaction from the field radiated by the test-body in the
course of these operations would (except in trivial cases) lead to a limitation of the
accuracy of the field measurement, entirely at variance with the premises of the theory
__ On the other hand, ... the occurrence of irregular fluctuations in the value of any
field component ... was known to be responsible for one of the divergent contributions
to the self-energy of charged particles. Landau and Peierls, somewhat illogically, tried
to bring it into relation with their alleged limitation of measurability of the field, and
this only further confused an already tangled issue. (14]

As noted above, after two years of soul-searching, and by the use (in thought experiments)
of classical test bodies, the consistency of QED as regards measurements was proven, for, again
according to Rosenfeld [15]:

So long as we treat all sources of electromagnetic fields as classical distributions of
charge and current, and only quantize the field quantities themselves, no universal scale
of space-time dimensions is fixed by the formalism. It is then consistent to disregard
the atomistic structure of the test-bodies and there is no restriction to the logically
admissable values of the charge density. [16]

Surely this is one of the few examples of a problem of physics reduced to one of mere logic. As
in much of Bohr's work on measurement theory, a great deal of effort went into assuring readers
that they need not worry further about the puzzling issues that gave rise to the paper. Abraham
Pais quotes approvingly a friend’s remark on Bohr-Rosenfeld: “It is a very good paper that one
does not have to read. You just have to know it exists.” [17]

4 The Legacy of Uncertainty: The Positron and the Neu-
trino Conjectured

After the probability interpretation and the (quite separate) measurement problems of non-
relativistic quantum mechanics had been “solved,” or at least put in abeyance for a time, most
thoughtful physicists felt that the first order of business was to look at other fundamental issues
of the theory, especially those related to the striking new phenomena then being revealed by ex-
periment. At least one important era of research had been successfully concluded; Dirac in 1929
expressed it as follows:

The general theory of quantum mechanics is now almost complete, the imperfec-
tions that still remain being in connection with the fitting of the theory with relativity
ideas ... The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known. [18]
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Dirac admitted that there remained great practical difficulty in actually solving the compli-
cated equations for atomic and molecular systems, but he failed to mention that there were also
treatment of collective behavior like superconductivity. As the quotation above shows, the fun-
damental problem that concerned Dirac at this time was the relativistic theory of the electron
itself, and this also appeared to be implicated in at least three other problematic areas, namely:
quantum field theory, nuclear physics, and the cosmic rays. [19]- .

Problems associated with the theory of the electron had been present almost since the turn of
the century. The existence of a finite-sized concentration of electric charge appeared to require a
new stabilizing force to prevent its explosion. As a constraint on the structure, physicists (notably,
H.A. Lorentz) advanced the hypothesis that all the mass of the electron was electromagnetic in
origin. In classical models, this required the (spherical) electron to have a radius

82

ro = a (2)

e and m, being the mass and charge of the electron, c the velocity of light, and a a dimensionless
constant of order unity, whose value depended on the assumed structure of the electron. (We shall
assume in what follows that @ = 1). Letting the radius tend to zero gave the electron an infinite
self-energy, i.e., an infinite mass. There was difficulty in reconciling a finite electron with the
theory of relativity, and Lorentz had suggested that within the electron radius o, physical laws
that were different from the usual ones might apply. [20]

The problem became acute with the advent in 1925 of quantum mechanics, in which the
electron was treated as a point particle. The most obvious relativistic generalization of the
Schroedinger equation, the Klein-Gordon equation (“the equation of many fathers”), did not
give the correct fine structure of the hydrogen spectrum, which Arnold Sommerfeld had somehow
managed to obtain (without electron spin!) by using the Bohr-Sommerfeld “old” quantum theory.
The problem in quanturn mechanics was that the electron spin was not properly taken into ac-
count. Dirac set out to find an equation that would give the right spin and magnetic moment to
the electron (he referred to these as “duplexity phenomena”) by remedying the “incompleteness of
the previous theories lying in their disagreement with relativity, or alternatively, with the general
transformation theory of quantum mechanics.” [21]

Dirac’s new electron theory was spectacularly successful in treating the fine structure of hy-
drogen, Compton scattering, the electron’s magnetic moment, and other important physics-but it
also gave rise to new puzzles. The chief difficulty was the presence of negative energy states, which
were meaningless in a relativistic theory, since an electron in such a state would have a negative
mass. Dirac tried to prevent electron transitions to these negative energy states by declaring that
they were all filled, and hence, by the exclusion principle, unavailable in practice. If occasionally
“holes” did occur, they would act in every way as positive electrons.

Later, the one-electron theory of Dirac, with filled vacuum states, was supplanted by a quantum
field theory, which was then combined with the quantum field theory of the electromagnetic field
that Dirac (and also Pascual Jordan) had pioneered in 1927. The theory of the two fields in
interaction became known as quantum electrodynamics (QED). [22] However, this completely
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relativistic theory was itself plagued by serious inconsistencies, of which the most egregious were
the so-called “divergences,” namely, infinite predictions for the physical mass and charge of the
electron. These divergences arose when virtual (i.e., energy-nonconserving intermediate) states
were summed over, according to the rules of perturbation theory. The lowest approximations
did give finite results, and were in surprisingly good accord with experiment. It was, therefore,
assumed that the theory was correct at lower energies, but that it broke down above some critical
interaction energy. In a suitably modified QED, it was argued, the small value of the expansion
parameter (the dimensionless fine-structure constant, a = 1/137) would validate the perturbation
expansion.

Quantum mechanics can be expressed either in configuration space or in its complementary
energy-momentum space, the two spaces being related by the Fourier transform theorem. Thus,
a critical high energy can be related to a critical small distance. QED was working well at the
energy scale that corresponds to the Compton wavelength, but it was assumed that it would very
likely break down at the classical electron radius ro, which is 137 times smaller than the Compton
wavelength. That might account, it was thought, for the apparent contradictions to accepted laws
of physics that were puzzling physicists around 1930, especially in the higher energy nuclear and
cosmic ray phenomena, since ro = 10~!3cm is almost identical with the known range of nuclear
forces. [23] This distance was also a “natural” fundamental length at which to expect a breakdown
in the classical theory, as Lorentz had, in fact, predicted at the beginning of the century. One
of the principles guiding the development of quantum theory had been that classical physics is a
limiting case of quantum physics (Bohr’s Correspondence Principle); it was not forgotten in the
1930s.

Bohr suggested just such a breakdown of known laws in his Faraday lecture to the British
Association in London in 1930, and repeated the idea at a conference in Rome in October 1931.
(24] To Dirac he wrote: “I ... believe firmly that the solution to our present troubles will not be
reached without a revision of our general ideas still deeper than that contemplated in the present
quantum mechanics.” [25] Heisenberg, who adopted the same belief as Bohr, tried to make a
theory involving a minimum length, introducing a space that was a lattice-world, rather than a
continuum, a concept to which he returned several times later on in his life. As the appropriate
lattice spacing he proposed the distance h/2cMc, where M is the mass of the proton. Thus this
distance is about 2000 times smaller than the electron’s Compton wave length. He motivated his
choice by the argument that distances smaller than the uncertainty inherent in a measurement
with the most massive known elementary particle, the proton (i.e., the uncertainty in position
determination by an ideal hypothetical proton microscope) were meaningless. This, then, was one
legacy of the uncertainty relations. [26]

Let us now leave aside the problems of QED and consider the conventional picture of the
structure of the nucleus around 1930. In 1930 it was believed that there were only two elementary
particles, the proton and the electron (described in an Encyclopedia Britannica article by Robert
Millikan as negative and positive electrons). These particles interacted according to the laws of
Maxwell and of quantum mechanics to produce ordinary matter. Thus all matter, atoms and their
nuclei were supposed to be electrical in nature. (The only additional fundamental interaction was
gravity-curved space-time perhaps-although if all mass were truly electromagnetic, then perhaps
gravity itself was intimately entangled with electromagnetism. (The notion of a unified field, was
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considered by Einstein, Hermann Weil, Theodor Kaluza and Oskar Klein, and others.)

One of the most immediate difficulties with the electron-proton nuclear model was (-decay.
Without the neutrino, not yet postulated by Pauli, any theory of S-decay inevitably violated
energy and momentum conservation. These days we may find it surprising that the generation of
quantum revolutionists did not insist upon the preservation of the basic conservation laws. (Indeed,
Bohr rather preferred the idea that energy was not conserved in individual elementary processes,
but only statistically. He argued that in that case, the first and second laws of thermodynamics
would have a comparable statistical foundation. [27])

Some other difficulties of the electron-proton model were (28] :

o The symmetry character of the nuclear wave function depends upon the parity
of the atomic mass number A, not Z, as the model predicted. [The number of
fermions in the nucleus in the model is 2A-Z}; when A-Z is odd the spin and
statistics of the nucleus were given incorrectly. For example, nitrogen (z=1,A
= 14) was known, from the molecular band spectrum of Nj, to have spin 1 and
Bose-Einstein statistics. In the e-p model, it was composed of 21 fermions—so it
should have had half-integer spin and should have obeyed Fermi-Dirac statistics.]

o No potential well is deep enough and narrow enough to confine a particle as light
as an electron to a region the size of the nucleus. [The argument for this is based
on the uncertainty principle and on the relativistic electron theory.]

o It is hard to see how to “suppress” the very large (on the nuclear scale) unpaired
magnetic moments of the electrons in the nucleus, which would conflict with the
data on the hyperfine structure of atomic spectra.

The great attraction of the electron-proton model was that it was a unified theory. Indeed, no
more unified theory has existed between that of Thales of Miletus (who is said to have believed that
everything is made of water) and modern string theory. The only problem was that the electron-
proton model could not coexist with quantum mechanics. But could it be that quantum mechanics
was the correspondence limit of some more general dynamical theory that might relinquish even
more of measurability than quantum mechanics did? For example, the observables in the new
theory might be represented by operators that were non-associative, as well as non-commutative.

Such was the thinking as the thirties began: A new physics was in the offing, a new revolution
in physics as one penetrated below some minimum distance. In part that thinking was correct-a
new physics was in the offing. But it was not to be a physics of new laws, but one of new particles!
The particles were new, but they obeyed the known laws of relativity, quantum mechanics, and
quantum field theory.

The first of the new particles, the neutrino, was proposed by Pauli in a famous letter, dated 4
December 1930 and addressed to a meeting on radioactivity in Tuebingen (via Hans Geiger and
Lise Meitner). The letter began: “Dear radioactive ladies and gentlemen.” The new proposal had
probably more a conservative than a radical character. One of the suggested neutral fermions
was supposed to sit with each electron in the nucleus, thus solving the spin-statistics difficulty.
In -decay, it would accompany the emitted electron, thus permitting the conservation of energy
and momentum. Pauli called the particle a “peutron,” and indeed it was meant to accomplish
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a part of what was later done by the neutron and the neutrino together. (Of course, it still did
nothing to help the “confinement” and the hyperfine structure difficulties of the electrons in the
nucleus. It should also be noted that Pauli’s neutron was a purely conjectural particle, designed
to be almost undetectable. The actual neutrino was detected only on the 1950s.)

Pauli was very uncertain about his neutron-neutrino idea, and while he told people about it
privately, he did not want the idea to be published. One of the first times it was mentioned in
print was in a report given by S.A. Goudsmit at an international conference in Rome in October
1931. [29] However, at the same meeting, Bohr discussed “Atomic stability and conservation
laws,” saying about f-decay:

If energy were conserved in these processes, it would imply that the individual
atoms of a given radioactive product were essentially different, and it would be difficult
to understand their common rate of decay. If, on the other hand, there is no energy
balance, it is possible to explain the law of decay by assuming that all nuclei of the
same element are essentially identical. This conclusion would also be in accord with
the general evidence on the nuclear statistics of non-radioactive elements, which has
revealed the essential identity of any two nuclei containing equal numbers of protons
and electrons. [30]

A proposal rather close to our present idea of the neutrino was first presented by Pauli at
the Seventh Solvay Conference in October 1933, a year and a half after the neutron had been
discovered. A few months later, Fermi made his 3-decay theory, conserving all important physical
quantities and fitting the 3- decay lifetimes very well. Nevertheless, in October 1934 at an inter-
national conference in London-Cambridge, the preferred theory presented was not Fermi’s, but a
non-conserving theory proposed by Guido Beck and Kurt Sitte and openly advocated by Bohr.

[31]

5 The Legacy of Uncertainty: The Neutron and the Fermi-

Field

The annus mirabilis of elementary particle physics was the year 1932. Here is how the discov-
eries went: January, deuterium (Urey et al.); February, the neutron (Chadwick); April, the first
accelerator induced nuclear reactions (Cockroft and Walton); August, the positron (Anderson);
September, the cyclotron (Lawrence). In the same year, 1932, Heisenberg wrote a three-part paper
which introduced a neutron-proton model of the nucleus. [32]

Heisenberg’s model is widely praised in nuclear physics textbooks, and some of the physicists
who were active in nuclear theory during the 1930s (e.g., Bethe) have said that it allowed them to
use quantum mechanics, because it effectively took electrons out of the nucleus. In Heisenberg’s
model, nuclei are built of protons and neutrons interacting through charge-exchange forces. In
the Hamiltonian describing the nucleus, only neutron and proton space and spin coordinates
appear, and the isospin operators are introduced to change the nucleon type. Thus, if one ignores
the frequent mention and use of nuclear electrons in the Heisenberg paper, treating it as pure

127

o



phenomenology of nuclear systematics, it is possible to argue that Heisenberg’s model makes
quantum methods available to nuclear physics (although the usefulness of such a partial approach
had already been demonstrated by Gamow in his a-particle model of the nucleus).

However, there are still electrons, and they play an important role, in Heisenberg’s “neutron-
proton model” of the nucleus. For example, the neutron is an electron-proton compound; the
charge that is exchanged to provide the attractive binding force is an electron; in B-decay ra-
dioactivity, the electron is emitted without a neutrino (and it is thus an energy, momentum,
and angular momentum non-conserving theory); in addition to the electrons bound in neutrons
and particles, there are other “free” nuclear electrons to account for the frequent occurrence of
interactions involving high energy radiation, e.g., Bremsstrahlung.

It is difficult for us to see how so radical a departure from physical norms could have been
tolerated. It is, in fact, so difficult that most textbook authors are embarrassed to reveal that
Heisenberg’s fundamental theory violated almost all conservation laws (charge is an exception
to this rule), or that half of the Heisenberg work consisted of wrestling with this devil! In the
Hamiltonian, one sees that the neutron is treated as an electron-proton composite of spin 1 /2,
obeying Fermi statistics, while the proton is an elementary fermion. The p-p interaction is pure
Coulomb; the n-n interaction is a double exchange, as in the hydrogen molecule, or more generally,
as in covalent bonding; the n-p interaction is one-electron exchange, as in the jon H}. It was only
after the success of the Fermi 8- decay theory that Heisenberg accepted the idea of the neutrino
and the “elementary” neutron, and he was one of the first to do so! [33]

Fermi’s theory of 3-decay contributed much to the solution of the difficulties of nuclear struc-
ture theory, aside from being a good account of this special form of radioactivity. Embracing
Pauli’s neutrino (so christened by Fermi after Chadwick’s discovery of the proton’s neutral part-
ner), the theory treated the emission of an electron-neutrino pair, coupled in a “four-vector” state,
much like the emission of a photon from an excited atom. The photon was not “in the atom” to
begin with, but it was created in the transition. Thus electrons and neutrinos need not be inside
nuclei. Advances in radiation theory using QED also showed that the large observed radiative
interactions were made by virtual electron-positron pairs in the nuclear Coulomb field- these were
the “low-mass” radiating charges of the nucleus. The radiative processes consisted of, besides
Bremsstrahlung, pair production and pair annihilation. [34]

The upshot was that it became unnecessary to postulate the existence of electrons in any
nucleus, even those that B-decay. Heisenberg enthusiastically accepted the idea of the Fermi-field,
not only for 3-decay, but also as the nuclear analog of the electromagnetic field. Thus, much as
atoms were held together by the exchange of electromagnetic quanta, the photons, nuclear forces
were to be carried by the quanta of the nuclear field, i.e., electron-neutrino pairs. The small value
of the Fermi coupling constant, fitted at low energies to the observed rates of 3-decay, would be
compensated in the case of nuclear binding, where higher virtual energies were dominant, by large
matrix elements of the interaction. Indeed, these matrix elements were more than large-they were
infinite! Thus, if the integrations in calculating the matrix elements were cut off at a suitably
chosen high energy (again implying a characteristic length), it was possible to fit the required
strength of nuclear binding forces. [35]

Unfortunately for the many physicists who had been attracted by the high degree of unification
presented by the Fermi-field theory of nuclear forces, it was not possible to fit both the strength
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and the range of nuclear forces simultaneously by the choice of cutoff. That such a procedure
would fail by many orders of magnitude became clear to Heisenberg when he worked out the
details; independently, this result was found and published by two Russians, Igor Tamm and
(once again) Dmitri Iwanenko. [36]

Meanwhile, in far-off Japan, a young physicist of the next scientific generation, Hideki Yukawa,
advanced boldly to the next step. Challenging the new orthodoxy of quantum mechanics and
quantum fields, just as the previous generation had done in postulating and developing those
new dynamical systems, Yukawa decided that a new field should have a new quantum, not the
electron, not the electron-neutrino pair, but a quantum all of its own. He called this the “heavy
quantum,” or the “U-quantum,” of the nuclear force field, which he called the U-field.

This scientific revolution that has been called, by Yoichiro Nambu, the paradigm of modern
elementary particle theory, namely, the identification of forces and their representation by quantum
fields, having their characteristic quanta, came about this way, as Yukawa relates it:

The crucial point came to me one night in October [1934]. The nuclear force is
effective at extremely small distances, on the order of 2 x 10~!* cm. That much I knew
already. My new insight was the realization that this distance and the mass of the
new particle that I was seeking are inversely related to each other. Why had I not
noticed that before? The next morning, I tackled the problem of the mass of the new
particle and found it to be about two hundred times that of the electron. It also had
to have the charge of plus or minus that of the electron. Such a particle had not, of
course, been found, so I asked myself, “Why not?” The answer was simple: an energy
of 100 milljon electron volts would be needed to create such a particle, and there was
no accelerator, at that time, with that much energy available. [37] -

After presenting this paper at a physics meeting, and after submitting the article with his
theory to a journal in November 1934, Yukawa felt that his struggle with the problem of nuclear
forces had been, for the time being at least, resolved. He concluded his account of his scientific
life up to that time as follows:

I felt like a traveler who rests himself at a small tea shop at the top of a mountain
slope. At that time I was not thinking about whether there were any more mountains

ahead. [38]

I too feel that it is time now to rest, without proceeding further with this description of the
legacy of uncertainty.
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Abstract

The quantum non-demolition measurement of the cyclotron excitations of the electron
confined in a Penning trap could be obtained by measuring the resonance frequency of the
axial motion, which is coupled to the cyclotron motion through the relativistic shift of the
electron mass.

1 Introduction

The process of making a measurement on a quantum mechanical system introduces quantum
noise to that system. A quantum non-demolition measurement (QND) scheme seeks to make a
measurement of an observable by feeding all the introduced noise into a conjugate variable to
that under consideration. An ideal QND observable is one which has always the same values in
repeated series of measurements. It means that the total Hamiltonian of the system plus the
interaction with the measurement device must commute with the observable to be measured at
given times, for a stroboscopic QND, observable or at any times for a continuous QND observable
[1].

Recently there has been a number of theoretical papers (2, 3, 4, 5, 6] proposing schemes for
QND measurements and fewer experimental realizations mainly in the optical regime [7,8,9).
In this paper we present another scheme which could be easily verified because the system is
well known and studied. The system is an electron confined in a Penning trap [10]. Penning
traps for electrons, protons and ions have been extensively used for high precision measurements
of fundamental constants and laws of Nature, like for instance the g-factor of the electron and
the CPT invariance [11]. In this paper we will show that it could also be used to give a QND
measurement of the excitation number of the cyclotron motion.
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2 The Penning trap

A Penning trap consists of a combination of constant magnetic field and quadrupolar electrostatic
potential in which a charged particle, for instance an electron, can be confined. It is composed
by two end-cap and one ring electrodes to which a static potential V; is applied [11]. There
is also a homogeneous magnetic field By along the symmetry axis of the trap assumed as the
z-axis. Neglecting the contribution of the spin, which we keep locked, the Hamiltonian for the
electron of charge e and rest mass mg in the trap is given by the following expression

1 - €=
H—m( —ZA)'i‘CV (1)
with
A= (-—%Bo, 2B, o) @)
_ Vo (22+
v = 51_3( Y, 3)
The typical experimental values are
' By =~ 58100 G
Vo ~ 10V

% =~ 33x103%m

where z, specifies the dimension of the trap. It is easy to show that in terms of rising and
lowering operators the Hamiltonian (1) becomes [10]

H = hu, (ala. + %) + A, (aza, + %) — P (a;am + %) (@)
with | |
“= 7 [ MO (3 ) + | O+ ,-p,)] (%)

am = %[‘/?:c(z+iy)—‘/ﬁ:m—ipz)] (6)
a; = \/n.l;:'z+i\/2molhu, ;. (M

The displaced"c&éiétron angular frequency is
1 fw\?
w:.zwc[l—i(—)] (8)

We

with w, = |e| By/mec the bare cyclotron frequency.
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The axial angular frequency is given by

le[Vo
z = ng (g)
and the magnetron frequency by
e (w_)’ (10)
T2 \w./

The ranges of frequency in the experimental situation are:

wif2r ~ 164 GHz
w;/2mr ~ 64 MHz
Wm/2r ~ 11 kHz.

Thus each frequency belongs to a very different band of the electromagnetic field.

3 The measurement model

The question one can rise is: how can we measure the various frequencies of oscillation? In
order to make a measurement we need to couple the system to what Feynman called the “rest of
Universe” [12]. It turns out that the best way of measuring the properties of the various motions
of the electron is to measure the current induced by the axial motion of the electron along the z-
axis [13]. Indeed, the electric charges induced by the oscillatory motion on the end-cap generate
a current which can be measured.
The system plus the measurement device is represented in Fig 1. Here L is the inductance of
the measurement device and R its resistance. The induced current dissipates on the resistor R
which is in thermal equilibrium at temperature T = 4 K. u(t) represents a stochastic potential
which gives the effect of thermal fluctuations or Johnson noise.

The axial motion plus the read-out are described by the following Hamiltonian

2

z’+%(az+Q)°+¢—+

P | mow;
’ z z
H + 5T

2mp 2
+00

+ [ 42 (@) + k@)Q)* + 2%*(®)] (11)
/,

where we have considered a thermal bath with a continuous distribution of modes linearly coupled
to the electronic circuit; ¢ is the electric flux in the inductance L, Q is the electric charge on the
capacitor C which is the capacity of the trap; az represents the induced charge due to the axial
motion of the electron [14] with @ = ae/2z, where 2z is the distance between the two end-caps
and «a is a constant of order of unity which takes into account the curvature of the capacitor
surfaces.

However, if we wish to measure the properties of the cyclotron motion we need a coupling
between the axial motion and the cyclotron motion. In earlier experiments with the Penning
trap [10] this coupling was introduced by adding an inhomogeneity on the magnetic field B, by
means of a “magnetic bottle”.
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FIG. 1 The axial motion of the electron coupled to the read-out apparatus.

4 The Hamiltonian of the system

The precision of the measurements is, however, so high that we cannot get rid of the relativistic
corrections; then, the coupling between the two modes is also given by the relativistic shift of
the electron mass [15]. In such a case the system’s Hamiltonian we have to consider is

th: = HNR+HRC (12)
e \2
Hyg = (ﬁ'— EA) +eV (13)
1 L et
Ho = ~gogs (7~ 24) 09

Finally we can write the following Hamiltonian of the quantum system:

2 2 2
H‘W = hwcazac {l_l(&) hewe ]- h U;z(alac)2+

2\w./ ~ 2moc?| 2mo
P’ hwc t 1 P‘ mow2 2
z - ct = - z z 1
*ome || med? ("“" + 2) i@ T 2 - (15)

where we have completely neglected the magnetron motion which is not coupled to other motions.
It is now easily seen that the coupling between the axial motion and the cyclotron motion is due
to the relativistic shift of the mass.
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5 The QND observable

If we now introduce as before the coupling with the external world, the total hamiltonian becomes

H = Rhala. +hu(ala)? +
4 2
+ 2 [1- uve (al.ac+l)]— LB P

2me moc? 2 8m3c? 2
(a2+Q? & 2, 2,2
P S a/ dQ [(p(Q) + k(2)Q)® + Q)] (16)
with
" 1w\ hwe
We = e [1'2 (wc) " 2me ] (17)
g
U = —m. (18)
It is evident that ala. = fi. is a QND observable because
[Ae, H] = 0. (19)

The axial motion of the electron represents the probe that enables us to measure the proper-
ties of the cyclotron motion. Indeed, the axial frequency now depends on the cyclotron excitation
quantum number fi., which is a constant of the motion, at least as long as we can neglect the
spontaneous emission of the cyclotron motion. It has been measured [10] that the spontaneous
emission coefficient is 47! ~ 1 s thus, if the measurement is performed in a time much shorter
than 7! we can neglect the spontaneous emission of the cyclotron motion and perform a QND
measurement of the excitation number #.. It has also been shown [16] that ~. could be re-
duced by the cavity effect [17). Indeed, when the characteristic length of the cavity of the trap is
shorter than half wavelength of the cyclotron motion, the cyclotron spontaneous emission should
be inhibited.

One can also show that the anharmonicity of the axial motion is very small and can be
neglected. It turns out that it is (w,/w.)? times smaller than the anharmonicity of the cyclotron
motion. Thus the equations of motion now are:

Z = E[H, Z]
[H, p.]

P =
P Ay ¢ (20)
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By making a Markov approximation in the equation of motion for the variables of the thermal
bath, we can write the following equations [18]

P N PR P

2= e 1 nzog’(n°+2)]

. - _ 2 =
] 7= = ¢"’°“”z c9 21)
Q = =

L
. Q az .
| b = -F-F-10+e0

where ~ represents the rate at which the axial motion dissipates its energy due to the coupling
with the rest of Universe represented by the read-out apparatus. Of course, in such a case one
has to sustain the axial oscillation with an oscillating external potential V' (t) tuned at the axial
frequency of the electron. In the experimental situation is always

hw, << kBT

with kg the Boltzman’s constant. Then, it is possible to show [18] that the statistics of the noise
term £(t) is that of a white noise with expectations

€@y =0
(E@EER)) = 2vkgT 6(t - t). (22)

By introducing the Fourier transforms defined by

1 T
10 = 7 [ dolwre (29
we can write the linear system:
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The determinant of the homogeneous system is
2
A= (@? - (W? -t +ivw) - a%wf (27)

1
w=\@g *=I

i.e., the characteristic frequency and the bandwidth of the electronic circuit respectively.
The solution of the algebraic system is easily obtained and we get:

with

) = —2% (6w - V) (28
5) = - (6w) - V(w) (29)
oW = L2 (6w - VW) (30
) = L2 (Ew) - VW) (31)

We see that at w = @, both Q and ¢ are zero and the current which dissipates energy on the
resistor is only due to the induced charge on the end-caps.

6 Output statistics

The signal to be measured by the read-out is the voltage at the extremes of the resistor R which
is proportional to the induced current. The induced current is proportional to the axial velocity
of the electron through

1(t) = ax(t) = %(‘) (32)

thus the fluctuations of the measured potential are directly connected with the fluctuations of
the axial momentum of the electron:

Vout(w) = I(w)R + €(w) (33)

where £(w) takes into account the Johnson noise on the resistance R. The spectral density of
the output voltage is given by:

(Vous () Vous () = (Vo)) (Vo)) =
(Z) @p) + = (GLEWN + ERWN) + EWES). (39

For simplicity we take the driving potential V(t) noiseless then we get:
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FIG. 2 The two resonances of the normalized output variances of the signal for

we # @;. The value of the maximum at w >~ @, is not shown because it goes out of
the scale. Its value is 80.

Thus eq. (34) becomes
(Vout(w)‘./out(w’» - (th(‘*’)) <‘-/ou¢(“/)) = th(u) 5(“) + w’) (38)
with
(a*R/m)w?u? [(a®R/m)w? — 2v.(@? — w?))
[(? — w2)(@2 - w?) — a%w?/mCT + [rew(@? — w?)]’

Vout(W) = 2L~.kgT {1 + } . (39)

7 Conclusions

In Fig. 2 we plot Vous(w)/Vout(@,) versus w for a given value of w. # &,. We see two maxima
for w > 0; one is for w = w, and the other for w ~ @,. As soon as we tune the electronic
frequency w, in resonance with @,, we obtain only one maximum for w = @, (Fig. 3). From
eq. (26) we see that the resonance frequency depends on the quantum number fi. of the cyclotron
motion. In Fig. 4 we show the top of the curves obtained with i = 0 and fi. = 1. In order to
discriminate between the two maxima we need a sensitivity AQ; /w; ~ 7 x 10~!° which is slightly
above the experimental limit, as long as we know, which is extimated to be Aw,/w, ~ 10~° [10].
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FIG. 3 The resonance of the normalized output variance of the signal for w, = @;.
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FIG. 4 The amplified top of the resonance of the output variances of the signal
fori,=1and i, =0.
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Abstract

The origin of the Dicke cooperative states, ad hoc assumed for superradiance in the
system of molecules where no mutual interactions exist but all encountering the same field
of radiation, was studied by considering two harmonic oscillators driven by a common field
of radiation. A phasing operator as dy = D(a)* Py D(a), where D(a) is the displacing
operator and Py the projection operator for constant energy N for two oscillators, was
derived. The eigen states of the phasing operator ®n are found to show a finite correlation
as for the Dicke cooperative states.

1 Introduction

The important notion put forward by Dicke (1], that molecules can not be treated as independent
when the molecules are interacting each with a common field of radiation, introduced the well
known phenomena of superradiance with the ad hoc assumption of cooperative states. This ad
hoc assumption of the Dicke’s cooperative states may be a natural consequence of the fact that a
forced quantum oscillator can be described in terms of the Glauber’s coherent states [2]. However,
it may be more enlightening to examine in rigorous quantum mechanics how two independent
molecules (harmonic oscillators) are getting correlated simply by having separate interactions
with a common field of radiation.

Furthermore, it may be more interesting if we restrict the interaction between the radiation
and the molecular system to be “elastic”, that is , no net transfer of energy between the molecular
system and the radiation field.

Naively this restriction may correspond to an elastic light scattering from the two molecule
system and a possibility of phasing or correlation of the two molecules by this continuous scattering
of light ( more correctly a driving field of radiation in the elastic channel of interaction).

143



2 Two Driven Oscillators
We consider two harmonic oscillators driven by a classical field :
H = hw(ata, + afaz) — zo(al + a1 + af + a2) E(t) (1)

where we do not have a direct coupling between the two oscillators. This system seems to be con-
sidered as trivial because a single harmonic oscillator driven by a classical field is fully understood

(3] .

Since we will be extending the solutions of the single harmonic oscillator driven by a classical
field to the two oscillator problem of Eq.(1), we want to recollect here some important results of
a driven harmonic oscillator [3] :

D(a)l0) = explaa* —a"a)l0) = o) (2)
D(a)ln) = ((a*—a*)"/Valla) (3)

where D(a) is the displacement operator, |a) coherent state of Glauber,
a= (ixo/h)/ E(t) exp iwtdt, exp(aat —a"a) = exp(—|al?/2) exp(aat)exp(—a’a).

We address now to the two oscillator problem of Eq.(1).

Suppose the two oscillators are prepared in a state |N) of total energy N = ni+nz, then we
let |N) be driven by a classical field D(a) but we restrict the driven system D(a@)|N) to remain
at the same energy of |N).

The quantum mechanical matrix element corresponding to this process may be written as

(N|D*(e)PnD(e)|N) (4)
where Py represents the projection operator for states of total energy N :

N
Py =Y_IN = n)in)(n|(N —n] (5)

n=0
Alternatively we may define a new operator :
‘I’N = D+(a)PND(a) (6)

and Eq.(4) can be written as
(N|®n|N) (1)

This implies some particular |N) states can become eigen states of the operator oN.

144



3 Evaluation of (N|®y|N)

For two harmonic oscillator states of total energy N we can write

N
=Y calN = n)In) (8)

n=0

From eq.(3) and eq.(8) we obtain

~ D(a)IN) = ch( b -}V "(a} — a)"/VIN = m)Val) |a)la)s (9)

n=0
where the suffix (1) and (2) refer to the oscillator index. Equation (5) can be rewritten as
N

Pr = 3 () "(a)"/ I = V) 10} 0w Ol Oy (a3 /vl = m)E) - (10)

n=0

From eqs.(6), (9) and (10) we obtain

(N|@n|N) = Z I ZCm(OI(z) Olny{a3(a} — a3)"ay "(af —a])" ™

JVRIVmRIN = n) /(N — m)}Ha)ayla) e 2 (11)

Making use of a|a) = o|a) and a*(at — o)™ = (a* — a*)"a" + m!(at — a*)" " /(m — n)!
we can obtain

N N

(NIONIN) = D 1D enl0l) (0l {Vm!(af — a3)™"/Vnl(m — n)!
+(aF - oj)"af/VmIVRIHV/(N = m)! (af - o)™ /(N = n)l(n — m)!
+(af — o))V "o " /V(N = m)!V(N — n)He)p)la) el (12)

Since we are dealing with two identical molecules and the same common field of radiation we may
set a; = a; = a and make use of the following [3],

al0) =0, (0la) = exp(~|al*/2) (13)
to obtain
N N N
(N|®N|N) Z Z Z emc; {exp(—2]a?)/ni(N = n)!H{Vm!V/ (N — m)! 6mn
n=0 m=0 [=0

+ (=¥ Vml |o N [ (m - n)l/ (N —m)!
+(=1)"V(N = m)! [a*/(n — m)!Vm!

+ (=DM a?¥ /VmI/ (N = m)! /(N = D)V 6,

+ (=D VI PN (1 = )l /(N = D)

+ (=1)"V(N = D™/ (n - HWVI!

+ (=)Mo VIV(N =1} (14)
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Since |N) of eq.(8) can be represented by a (N+1)-dimensional state vector, ®y can be defined
as a (N+1)x(N+1) matrix operator to give

N N

(N|®n|N) = E Zcmc, olm (15)

m=0 [=0

where we find, from eq.(14), the (1,m) matrix element of the operator ®x as follows:

Im
q>N

N
3 (exp —2lal*/n}(N = n)){VmIV/(N —m)! 6mn

n=0

+ (=) V! oMM /(m — 2)!V/(N —m)!

+(=1)"V(N = m)! [a|*"/(n — m)!V/m!

+ (=)™ [Vml /(N = m) {V/(N - )WV 6

+ (=N VI PN (1 - n) /(N = D)

+(~-1)"V(N =)l [a**/(n - DWVT!

+ (=)Mo VN -]} (16)

We can check for the correct limiting values:

lim &7 (a)

a—0

lim (N|®x|N)

= 6lm
N | N 2
= 3|3 en (VAW N = m)l/ Vol (N =n)!) b
n;o m=0
= D lel=1

4 &p As Phasing Operator

In order to probe into the physical meaning of the operator &y we illustrate for the simplest
nontrivial case of N = n +n2 =1
The &y operator is then given in the form

% ot
¢N=1 = (17)
@{0 (D}I

and the matrix elements are obtained from eq.(16) as follows:

8 = &} = exp(-2lal’)(4 - 8lol’ +8lal*)
o' = #)° = exp(~2la’)(~8lol* + 8al*)
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Diagonalizing the matrix of eq.(17) gives the eigen values ); and ), as
Al = q)OO + (DOI’
A = 0% ¥ (18)

The corresponding eigen states |,) and [A2) are obtained as follows:

A1) = \/Li(l[))(l)ll)(?)'*'|1)(1)l0)(2))a
M) = \/ii(lo)u)ll)m—ll)u)lo)(z)) (19)

Correlation or phasing of two oscillators can be measured by a value of < z, - £, > where z; and
x; are the two harmonic oscillator coordinates of displacement [4].
We can see easily

Oy (Hyzs - 221) )0} 2 = (0 0y (1221 - 22[1) )]0}y = O
for the case of a = 0, but for our eigen states of $ we obtain
(Mlzy - zalhi) = (Ag]zy - zg)As)

1
= 5903 {(0l2)(1] )T a2|0) (1) I1)2) + (12)(0laya1aF [1)(1)]0)(z)}

_ 2
= =z,

We can thus see that the two noninteracting molecules in the common driving field of radiation
find themselves as correlated. The correlated eigen states of the concerning Hamiltonian of eq.(1)
can be found as the eigen states of the phasing operator ®5 as introduced in eq.(6).

The existence of the correlated eigen states of the two oscillator Hamiltonian thus justifies
the ad hoc assumption of the Dicke cooperative states for independent molecules all in the same
common field of radiation.
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Abstract

It is shown that the usual one and two-mode squeezing are based on
reducible representations of the SU(1,1) group. Ceneralised squeezing is
introduced with the use of different SU(1,1) rotacions on each irreducible
sector. Two-mods squeezing entangles the modes and information theory
methods are used to study this entanglement. The entanglement of three modes
is also studied with the use of the strong subadditivity property of the
entropy.

1. Insreduction

In a recent paper [l] we have explained that tvo-mode squeezing is based
on reducible representations of the SU(1,1). The various irreducible sectors
have been identified and different SU(1,1) rotations have been performed on
each of them, generalizing in this vay the concept of squeezing. In this
paper we extend these ideas. In section 2 we consider one mods squeezing and
prove that it is also based on reducible representations of SU(1,1). The two
{rreducible sectors are {dentified and different SU(1,1) rotations ars
applied on each of them, generalising in this way the concept of one-mode
squeszing. In section 3 the two-mode case {s considered in connection with
both the SU(1l,1) and SU(2) groups. Some of the results presented in (1] are
briefly reviewed here. Each irreducible sector of the SU(1,1) (or SU(2))
group is squeezed indopondontly‘und the generalised squeezed state is
characterised by an infinite number of squeezing parameters. Hamiltonians
which will lead to this type of squeezing, are presented.

Two-mode squeezing entangles the two modes. Especially our generalised
squeezing entangles them in a very complicated wvay. One approach to study
this entanglement is by using {nformation theory methods. In section 4 we
use the subaddivity and strong subadditivity properties of the entropy to
define quantities which express the entanglement of two and thres quantua
systenms. Espacially interesting are the results for three entangled systeas,
because shey indicate that this case {s a non-trivial generalisacion of the
two system entanglement. The latter cass has of course been discussed since
the beginning of quantum mechanics; but it is only recently that some
preliminary discussion of the former case has appeared (2]. Our results
based on information theory methods suggest that the three system
entanglement is a very interesting problem that requires further study.

2. Generalised one-mode squsezing
We consider the harmonic oscillator Hilbert space H and express it as
HeH + H, (L
where H 1is the subspace spanned by the even aunber eigenstates and H the

subsp:cg spanned by the odd number eigenstates. We also consider the
corresponding projection operators to these subspaces:
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o= L | aN><con |
N=0

" - Y I2N+1><cav+1 | (2)
N=0

to + *1 -1

The one mode squeezing operators are defined as:

1 1
S(r, 4, X)) wmexp [- - o 1 k, - -r ot ] exp (1AK )
' 2 2 ) °
1 1 1 1
K =~2a a+- ; l(+ --a*? 7 K =« .2
° 2 4 2 - 2
(K. Ry) =¢K, : (K ,K]-2K, (3)
2 2 1! 3
K° = Ko . - (K+ K +K K*) = ki(k-1) @ ¢ o
2 - - 16

They form a reducible representation of SU(1,1). More specifically,
they form the k = 1/4 irreducible representation when they act on Ho ouly;
and the k = 3/4 {rreducible representation when they act on H1 only (3].
Related to this is the fact that:

(S(x. 0. 2), w1 = [S(r, 0, 2), %] =0 ()

The following unitary operator squeezes independently each irreducible
sector:

— - -

U(r_ 0 A ; rl 01 xl) - S(ro. ’

o oo ' Ao) f

o o ¥ S(rl, ‘1. Al) L3 (5)

This is more general than the operator of equ.(3). Only in the special
case

T,=rf o - " Ao = Ny (6)

the operator (5) reduces to the opsrator (3). Acting with the operator (5)
on a coharent state | A >, ve get a gonsralised squeezed state:

I a ; Tolodg i T8 A >= Uz, 0,3, i 102 | A>
=S(r 0 ) w [ A> . S(ry. 0. A =y | A> (7)

In the special case of equ.(6) this reduces to the usual squeezed
states.
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In systems described by the Hamiltonian

* 2 *
He u‘.+a + (“o ‘+2 + B, a’) 'o + (pl ¢+2 + yl ‘2) '1 (8)

ozdinnry-éohorcnc states will evolve into the generalised squeezed states
(7). In the special case Bo = By the Hamiltonian (8) reduces to the

Hamiltonian
H-ul+n+y12+pa+z (9)

which is associated to the usual squeezed states.

3. - o

The appropriate group for the study of two-mods quadratic Hamiltonians
is Sp(4,R) [4]. 1In chis paper we shall only consider its subgroups SU(1,1)

and SU(2) in connection with the Hamiltonians:
+ + * + +
1=9 8 a4 W, 8y 8y + a3 8 +y &4 a, (10)

*
H2 -9 11+ '1 + w, '2+ a, + 4 3 '2* +u ¢1+ ‘2 (11)

H

correspondingly. Both of these Hamiltonians have been used extensively {n
quantum optics problems ($]).

Starting with the SU(1,1) group we express the two-mode Hilbert space as
-

H, x Hy = kg.. L (12)
vhere Hk is the subspace spanned by the number eigenstates

He=(|N+k N> ; Nemax (o, - k), .... @) (13)

We also introduce the corresponding projection operators

= LIN+k D> <N+k N|

¥ -1 (14)

The two-mode SU(1,1) squeezing operators are defined as

Lo Ly
S(r, 0, A\) =exp [ -~-r e K+ +=-re K] exp (L2 Ko)
2 2
K,=a"a® : x - x1<"+*+1>
+ T % & 7 Roma e K - 2 L 1t
1 1
2 + + 2
K" == (a;, a, - a, a,)¢ .= (15)
PR Sk Sy B %
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They form a reducible representation of SU(1,1). More specifically,
when they act on the space Hk only, they form the

1+ x|

] - (16)

2

{rreducible representation of SU(1,1) which belongs in the discrete series.
Note also that

(S(z. 0, M), =] =0 (n

The following unitary operator squeezes independently each irreducible
sector:

Ul{r,. ‘k' Xk)) -1 S(ry. 0y Ay Ty (18)
In the speclal case '
LmE LT

N ‘o - '1 - ... (19)

-1

., =, - AO - Al - ...

-1
the operators (18) reduce to the operators (15).

Acting with the operators (18) on two-mode cohersnt states we get
generalised two-mods squeezed states:

U (tr, 0 A A 8>- E S(r. 0 ) = [ AL A2 (20)

In the special case of equ.(19) they reducs to the usual two-mods
squeezed states. In systeas described by the Hamiltonian

+ + * 4+ _+
Hew a5 a +u, 8 a3, + E (b 8y 3 * i & a, ), (21)

ordinary coherent states will evolve into the states of equ.(20). In the
special case that all the are equal to each other, the Hamiltonian (21)
reduces %o th¥Hamiltonian (10).

In the case of the SU(2) group ve express the two-mods Hilbert space as

H, x Hy = L H

2j§+1
[ b
jeo0,n, 1, ... (22)
where H21+1 is the subspace spanned by the nuamber sigenstates
u23+1 - (| N 2§-8> ; N=0, ... (20)) (23)

We also introduce the corresponding projection operators
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2}

"gel " T | N, 2)-N> <N, 2§-N|
i N=0
DTS (24)
The SU(2) squeezing operators are defined as:
Lo Lo
T(, 8, ) =exp [ -=-Te J+ +=-re J ] exp (1AJ°)
2 2 -
J + J] = J = i ( .at
P U i 7 LT St B B ) )
1 1
2 + + + +
Fmlo ey Rl 170 88 &7 22 (25)

They form a reducible representation of SU(2). VWhen they act on the
space H +1 only, they form the j {rreducible representation of SU(2). Note
also thgé:

(T (r, 0, ), 7] =0 (26)

The following unitary operator performs SU(2) rotations independently on each
irreducible sector:

U ((Ty01 P25e10 22301)) = LTy 25410 22941) %2501 @n
In the special case:

) o -y -

0ol-2

Al - Az - ... (28)

The operators (27) reduce to the operators (25). Acting with the
operators (27) on two-mode coherent states we get the states:

U (g1 25010 2ogn) | A A2 > =

(29)

% T (T340 25410 22541 F2g01 | A 82

They will be formed during the time evolution of ordinary coherent
states in systems described by the Hamiltonian: '

+ + , + * 4
Heop ot ey vo)a sy v Doy gy 8 8 *agg & ) GO

In the special case that all the u are equal to each other, the
Hamiltonian (30) reduces to the Hciltlonian (11).

The uncertainty properties of the states (20), (29) have been studied in
(1]. The results presented therse shov that both of these states exhibic
squeezing.
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4. Information theory approach to gquantum entanglement

In this section we use quantum information theory methods for the study
of two- and three-mode correlated systems. Let , be a two-mode density
matrix and <N,>, <N,> the average number of photons in the two modes. As in
our previous Wwork [31 ve define the information contained in this density
matrix as

h
T=s,,, - S =80 ™ (@) x5, (@) - 50)

S(p) = - Tr p Inp

Ni
<N1>

th
P (N,>) = | N,><N, | ; 1=1,2 (31)
1 1 1+ "1>)1+u1 { L

Following the negantropy ideas of Brillouin ve subtract here the entropy of
the systea from the maximum entropy that the system could have had, with the

average number of photons in the two modes been kept fixed. The maximua

entropy i{s equal to the entropy of a thermal system with an average nuaber of
photons in the two modes <N1>, <Nz>. Taking partial traces, we define:

pr=Tr, 0 i #, - Tr, » (32)
and express the information (31) as [7, 8]

I=I, +1,+1

1 2 12
I, =8 1o, (@] - S0
Ijg = S(p)) + S(p,) - S(p) (33)

1, is the information in the mode {; and I,, is the information in the
corrol*tion between the two modes. The lubaddiclsity property ensures that
the I,, is non-negative. Numerical evaluation of the quantities Il' I2' 112
for siscrnl examples has been presented in [1}.

A non-trivial extension of thess ideas occurs {n the cass of three
correlated modes. The information in this case is given by

I-5 (™ - s

~———
—

th th th th
= (<Nl>) L (<Nz>) X g (<83>) (34)

Ve define

th
I, is the 1p£ornatlon in the mode {. I is the information in the
c&trolncion'bo:woon the modes (i,]). H*Jthnn express the total information

in the three-mode system as:

I=1,+ I, +1,+ 112 + I,y + I(12 ; 23) (36)
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where
I(12 ; 21) = S(plz) + S(P23) - 8(p) - S(pz) (37)

The strong subadditivicy property (9] ensures that the quantity I(12 ; 23) s
non-negative. For symmetry reasons, somebody might be tempted to split
I(12 ; 23) as:

I(12 ; 23) = 113 + A (318)

so that he can express the information I of equ.(36), as the sum of the three
informations in the three modes; the three informations in the correlated
Pairs of modes; and the quantity A characterising the correlation between
all modes. However the quantity A is not necessarily positive and its
interpretation as information would be incorrect. Therefore, the information
I of a three-mode system is the sum of the thres informations in the three
modes; the two correlation informations in two of the pairs; and che
information I(12 ; 23) of equ.(37) which describes new types of correlations
in the three-mode systems. This result can be used as a "guide” of how to
study the entanglement of three systems. It is seen that three system
entanglement is a non-trivial generalisation of cwo system entanglement,

5.  DRiscussion

In many cases the concept of squeezing is based on reducible
representations of the SU(1,1) (or SU(2)) group. In these cases different
SU(1,1) (or SU(2)) rotations on each firreducible sector lead to generalised
squeazing. These ideas have been applied to both one-mode and two-mode
squeezing.

Two-mode squeezing correlates the two-modes and information theory
methods have been used for the study of these correlations. The
subadditivity and strong subadditivicty properties of the entropy have been
used for the study of two and three correlated systems, correspondingly. It
has been shown that the entanglement of three systems is a non-trivial
generalisation of the entanglement of two systems. Further work {s required
in this direction.
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Abstract

The completeness properties of the Schrédinger minimum uncertainty states (SMUS)
and of some of their subsets are considered. The invariant measures and the resolution
unity measures for the set of SMUS are constructed and the representation of squeezing and
correlating operator and SMUS as superpositions of Glauber coherent states on the real line

is elucidated.

1 Introduction

In the present paper we consider the completeness properties of the set (and some subsets) of the
states, which minimize the Schrodinger-Robertson uncertainty relation [1]

olad > —(1+4c%), (1)

where o, and o, are the dispersions of the quadrature operators Q and P ([Q,P] =1 ),
dq=(X2)—(X)2, X=Q1 Ps

and c is their covariation,

c=(1/2){(QP + PQ) - (Q)}(P).

We call such states Schrédinger minimum uncertainty states (SMUS). In fact they were intro-
duced by Dodonov, Khurmyshev and Man’ko [2] and studed as correlated states (see Ref. (3]
and references therein). When the covariation is zero, ¢ = 0, one gets the Heizenberg minimum
uncer tainty states (HMUS) and when in addition to this the dispersions are equal, 0, = 7, , the
corresponding MUS are the Glauber coherent states (CS) [4].

From the group-theoretical point of view SMUS are equivalent [5] to the group-related CS [6]
with maximal symmetry [7], the group in this case being the semidirect product H,® SU(1,1)
(see also [8]) of the Heizenberg-Weyl group H,, and the quasiunitary group SU(1,1) ~ Sp(2, R).
Up to a phase factor they coinside [5] with the Stoler states [9], known also as squeezed states
or two-photon CS [10] widely used in quantum optics (see for example the review papers {11, 12]
and references therein). The stable time-evolution of SMUS, which is important for the squeezing
and correlating processes, is considered in [5]. In other notations it was in fact obtained in [13].

SMUS are continuous set of states, which is clear from the definition. For such sets of states
the completeness properties (in the Hilbert space M) are very important for the applications in
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mathematical and theoretical physics. In the weak sense [6] the completeness of a continuous
set of states |z) is defined as a dense subset in H, while in the strong sense it is defined as the
(integral) resolution of the unity operator

1= [ l2) (=] du(z), (2)

where du(z) is a positive measure in the label space X 3 z. Such complete set of states |z) is called
(in general sense) CS [6]. The group-related CS are always complete in the weak sense, while the
resolution of unity has to be proved in every case. A sufficient conditions is the square integrability
of the corresponding representation of the group involved against the invariant measure.

In this paper we consider the resolution of unity (2) for the set of SMUS and for some of
their subsets. First we construct the corresponding invariant measures and check the square
integrability against them. Since the latter failed to be valid we look and find the noninvariant
measures, which provide the resolution (2). We call such measures the resolution unity measures
(RUM). In other notations (i.e. in no relation to SMUS) for the H, ® SU(1,1)-CS RUM were
considered in [8],

According to the definition of CS they are always over complete (at least in the weak sense
[6]) in M family of states. Then it worth looking for a more simple subset of CS which is also
complete in H or in some subspace (or even subset) of %. We consider this problem in the last
section. In particular we construct the squeezing and correlating operators as integral along the
real line of projectors on the Glauber CS and reproduce the result of Janszky and Vinogradov [14]
for the superpositions of Glauber CS along the real axis.

2 The Invariant Measures and RUM for SMUS

Up to a phase factor SMUS can be written in the form [5] of the H,® SU(1,1)-CS with maximal
symmetry

|&m) = N({in)exp [§a12+na"] 10),
2 )
Mem = (1) ey [ IEREET)), ®

where al = (1/v/2)(Q — iP) is the boson creation operator, [a,af] == 1, n is arbitrary complex
number and ¢ belongs to the unit disk, |¢] < 1. One also has the relation to the Stoler states
|z;a) (i.e. the squeezed states or the two-photon CS)

[é;9) = |z;a) = exp [% (zafz - Ea’)] |a).

where |a) is the Glauber CS and
£=e®tanh|zl, n=a -£&, o =acosh|z|+&e"sinh|z|.

The second momenta o,,0, and ¢ are expressed in terms of £ in [5, 15] and in terms of z in [8].
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The H,® SU(1,1)-CS (3) are related to the representation T(g), generated by the semidirect
sum algebra kD su(l,1) (known also as the one mode two—photon algebra)

hy, = lin. env. {l,a,at},

su(1,1) = lin. env. {K- = %a’, K, = -;—(at)z, Ko, = %(afa + %)} ;
Tlg) = exp(vKy —TK- + iwKo)exp(it + aa! — aa)
= T(‘y,w) T(tv a)a 9= 9(7»“’; t’a)' (4)

In terms of the above group parameters the invariant measure is a product of the SU (1,1)- and
the H,-invariant measures, '

. 12
du(y,wit,a) = smlilz A &dydiudiadt, A% = 4]y - 4lw2. (5)

But the representation (4) is not square integrable against the invariant measure (5) on the group
manifold. Then we have to look for the invariant measure du(¢; ) on the factor space G/K 3 (¢ 1),
which is a label space for the SMUS |¢;5), Eq. (3),
d* d*y
du(€;n) = ————. 6

This measure is not a product of the SU(1,1)-invariant measure on the label space ID, 3 £ and
the H,-invariant measure d?y on the label space € 3 n. And we still do not have the square
integrability, i.e. the right hand side of the Eq. (2) with |z) = |¢;7) and du(z) = du(€;n) goes to
infinity.

Let us now look for the noninvariant resolution unity measure ( RUM). The noninvariant RUM
if exists is highly nonunique. It is clear from the definition of RUM as a measure providing the
resolution (2), that if du(z) is a RUM for a group-related CS |z) then

duy(z) = du(g - z), (7)

where g - z denotes the action of the group element on z € X, is a set of RUM. It is an open
problem whether the noninvariant RUM exists simultaneously with the invariant one. For the
Glauber CS |a) the invariant measure d®a is the only RUM. In our case of SMUS the simplest
noninvariant RUM reads (in Stoler parameters)

dpo(z,a) = %e"‘dﬂz d’a, (8)
which can be expressed in terms of £, by means of the relations obtained above. The other
measures du,({; 1), Eq. (7), are obtained by means of the group action

@ —v n—&{+a)' 9)

u—-9f u-—of

g:-(&n)= (
where g = g(v,w;t,a) and u, v are the new SU(1,1) parameters,
w

u=<:oshA—2A

1
sinhA, v= —2A—7 sinhA,  A?=4[y)? - Zw’.
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As we have already noted the RUM for the H, ® SU(1,1)-CS were constructed in Ref. (8].
With the Note added in proof in [8] their measure should read (however we were not able to obtain
the resolution of unity by means of this measure)

27T Re (£n?)/(1 — I€]?
du (57) = ‘2)"""(1[ et | ¢ g,

3 Completeness of Some Subsets of SMUS

The two parameters subset |€o; ) of SMUS with fixed & (i.e. with fixed second momenta of the
quadrature operators) forms a strongly complete system in H

/c dv(n) lbo;n)(n; kol =1,  dv(n)= %(I_IEOP)_! d*n, (10)

which in Stoler parameters is known [16] and corresponds to the generalized Glauber CS (i.e.
to the H,-CS with the squeezed and correlated vacuum as the initial vector ). Such resolution
of unity was used in [16] for construction of new quasi probabilities “based on squeezed state”.
Note that the RUM in (10) is H,-invariant and is obtained (up to a constant factor) from the
H.,® SU(1,1)-invariant measure (6) by fixing ¢ = &. If we fix the other complex parameter
n = no we get the subset {|{;n0)} (this is SU(1,1)-CS with Glauber CS as initial vector) which
however is not complete even in the weak sense in H since the SU(1,1) representation involved
here is not irreducible. If we put 7o = 0 we obtain the complete (but only in the weak sense)
set of even SU(1,1)-CS |¢;+) [15] in the subspace H, of even functions. The state |{;+) is in
fact squeezed (and/or correlated) vacuum. In the subspace H. of odd states we have the strongly
complete system of the odd SU(1,1)-CS |£;—) (15],

&) = (1- 167 exp [etah)/2] 1), (11)
_y(if| = 1
[ avle ==l = 1 O = (12)

where |1) is the first exited state and dv(£) is the SU(1,1)-invariant measure. The state [€;+) is
the squeezed vacuum, and [§; —) is the squeezed one-photon state. Note that |€; =) is not SMUS.
The second momenta o, 7, and c in this state obey the equality

0302 = % 1+ 4c? + 8), (13)

i.e. |€;—) is another type of MUS. As in the case of squeezed ground state it is correlated when
Imé # 0 and 0, = 0 when { — 1. In the subspaces M there are also strongly complete sets of
even and odd CS |a)s [17], which are linear combinations of two Glauber CS |a) and | — a).

Let us consider the subset of SMUS |£;7) with fixed §{ = o and Im 7 = 720, that is with fixed
second momenta 0, = 0,0 = 0 and ¢ = ¢o and fixed first momentum (P) = p = po. This is
the one parameter set of states |g; o, Po), ¢ ~ Ren € R. It is the set of CS for the commutative
subgroup generated by the unit operator and by P. It is also the subset of general Glauber CS
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along the real axis, the initial vector being the squeezed and correlated vacuum, displaced by
po. The unitary representations of the group of translations (by ¢ along the real line) are highly
reducible thereby the set {{g; £, po)} is not complete in M even in the weak sense. Let for simplicity
Po = 0 and consider the operators

B(&é) = fn Ig; o) (€0; gl dg. (14)

B(£o) is an unbounded (Hermitean) operator, well defined in the Hilbert space H with the following
property: it leaves the set of SMUS stable, that is the states |¢') = B(&)|v¥) is SMUS if |¢)
is. Moreover if |g) is the Glauber CS on the real line then (one can calculate that) B(&)lg)
is an arbitrarily squeezed and correlated state. Thus B({) is an (one dimensional) integral
representation of the squeezing and correlating operator. One can also get an arbitrary SMUS by
means of a fixed operator

B= /R lg)(al dg = B(¢o = 0),

but acting on different states |1/). The obtained state B|y) is clearly a superposition of the CS
lg) with the weights ¥(¢) = (g|¥b). If (but not only if) |) is SMUS then B|y) is also SMUS with
arbitrary ¢ and o, > 1. The representation of squeezed states as superpositions of Glauber CS on
the real line was recently considered by Janszky and Vinogradov [14] in the form fg |¢)G(q)dy,
G(q) being the Gaussian weight function.
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Abstract

A pair of correlated photons generated from parametric down conversion was sent to two
independent Michelson interferometers. Second order interference were studied by means
of a coincidence measurement between the outputs of two interferometers. The reported
experiment and analysis studied this second order interference phenomena from the point of
view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first
step of the experiment used 50 psec and 3 nsec coincidence time window simultaneously. The
50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers.
The interference visibility was measured to be 38% and 21% for 50 psec time window and
22% and 7% for 3 nsec time window, when the optical path difference of the interferometers
were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows,
the experiment showed the non-classical effect which resulted from an E.P.R. state. The
second step of the experiment used a 20 psec coincidence time window, which was able to
distinguish a 6 mm optical path difference in the interferometers. The interference visibilities
were measured to be 59% for an optical path difference of 7 mm. This is the first observation
of visibility greater than 50% for a two interferometer E.P.R. experiment which demonstrates
nonclassical correlation of space-time variables.

1 Introduction

Two photon interferometry has drawn a great deal of attention recently because it provides a tool
to study the foundation of quantum mechanics and the fundamental properties of the electro-
magnetic field. A two photon interference experiment using two independent interferometers was
proposed by J. D. Franson(1] which constituted a new type of E.P.R. experiment for space-time
variables. Since then several experiments have reported the second order (second order in inten-
sity, fourth order in field) interference effect.[2]-[5] These experiments have shown visibility less
than 50% when the optical path difference of the interferometers are greater than the coherence
length of the optical beam. The reason that the visibilities are less than 50% is due to the use
of large coincidence time windows in these experiments. It has been pointed out that classical
models predict a maximum of 50% visibility for these experiments.[2]{3](6] Quantum theory pre-
dicts visibility greater than 50% for certain entangled states we called E.P.R. state. To make the
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type of argument presented by E.P.R.[7) this state must be produced. For this experiment a short
coincidence time window is needed to prepare an E.P.R. state.

Recently, a large set of measurements for a two photon interference experiment have been
carried out in our laboratory. In this experiment parametric down conversion is used to produce
the correlated two photons. The intensity of the down converted radiation used for the experiment
is sufficiently low so that a two photon state is produced such that each beam contain at most
one photon. Each photon is passed through an independent Michelson interferometer and is then
detected by a coincidence counter. If the interferometers are set so that the optical path differences
are longer than the coherence length of the fields, there is no first order interference (first order in
intensity, second order in field). However, there is second order interference if the optical paths of
the two interferometers are approximately equal. The interference arises from the frequency and
wave number correlation in a given pair generated by the phase matching conditions, uy +w; = w,
and k; + k3 = k,, where w, and k, are the pump frequency and wave number. The second order
interference is measured by studying the visibility of the interference fringes that are generated
by varying the optical path difference of the interferometers. The visibility of the interference
can be estimated by classical and quantum models. The classical model never predicts visibility
greater than 50%. However, for jdealized condition, the quantum model predicts a 100% visibility
when the coincidence time window is shorter than the optical path difference. In this case, the
registration time of one photon traversing the long path and the other following the short path of
the interferometers is outside the coincidence window and will not be registered by the coincidence
counter. As shall be explained below, the use of a short coincidence time window is equivalent to
preparing a type of entangled state discussed in the original E.P.R. paper.[7]

We report in this paper an experiment which for the first time shows second order interference
visibility greater than 50% for two independent interferometers. We also show in detail how the
E.P.R. state is generated for the coincidence counting experiment.

2 E.P.R. Paradox and E.P.R. State

The E.P.R. paradox was based on the argument that non-commuting observables can have simul-
taneous reality.(7] E.P.R. first gave their criterion: if, without in any way disturbing the system,
we can predict with certainty (i.c., with probability equal to unity) the value of a physical quantity,
then there exists an element of reality corresponding to this physical quantity. The gedankan ex-
periment discussed by Einstein, Podolsky and Rosen was modified by Bohm in 1951.[8] In Bohm’s
version a singlet state | ¥) of two spin 1 particles is produced by some source,

| $) = \/iiu ahe | A7) |A0)® | 78] (1)

where | ij%) quantum mechanically describe a state in which particle j has spin "up” or "down”
along the direction #. For this state, if the spin of particle 1 is measured along the z -axis, particle
2 will be found to have its spin oppositely aligned along the z-axis with unit probability. Thus,
the z-component of the spin of particle 2 can be measured without in any way disturbing it and
so is an element of reality according to the E.P.R. criterion. It is similarly found that the other
components of the spin of particle 2 can be determined as elements of physical reality and must
exist without considering which component is being measured. Of course, this point of view is
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different from that of quantum mechanics. Philosophical arguments aside, the predictabiiity of
the spin of particle 2 with 100% certainty after measuring the spin of particle 1 is a mathematical
consequence of quantum theory applied to state of the form (1). States of the type (1) are a
particular type of entangled state,[9)[10] which will be called E.P.R. state. It is the E.P.R. state
which leading to the nonclassical interference behavior of the two particle system. It is the E.P.R.
state has no classical analog.

The existence of polarization E.P.R. states have been experimentally demonstrated.[11]-[14)
The new type of E.P.R. experiment considers the measurement of position and time correlation
in contrast to the historical measurement of polarization correlation. The key element is to seek
an E.P.R. state for space and time variables. This is closer to the original E.P.R. gedankan
experiment for the determination of position and momentum of a photon. In this case, see FIG. 1,

the two-photon E.P.R. state sought is of the form,
Yepr = Y(L1, L) + ¥(5,, 53) (2)

where the first amplitude corresponds to the photons both passing along the longer arms of the
interferometers and the second amplitude corresponds to them both following the shorter arms. It
is clear that this is an E.P.R. state of the type defined above, if photon 1 is determined in the long
(short) arm, then, photon 2 follows the long (short) path. The photon path is then an element of
physical reality according to the E.P.R. criterion. In practice state (2) is produced by parametric
down conversion. If we assume perfect phase matching, then because ky + k; = constant, a
momentum measurement of one photon determines the momentum of the other. So the momentum
of the photon is also an element of physical reality. If this state does exist, in idealized conditions,
its signature is an interference visibility of 100% when the optical path difference of the two
indeperdent interferometers are equal.
However, the output of the interferometers is not state (2), but rather the state

\I’ = \I’(Ll, Lz) + W(S],Sg) + W(Lh Sz) + W(S], LQ) (3)

which differs because of the presence of the last two terms, which corresponding to one photon
passing the long arm and another passing the shorter arm of the interferometers. State (3) can not
give any determination of the paths of the photon. It gives a maximum of 50% visibility, which
can not be distinguished from a classical model. However, it will be seen in the next section,
that according to quantum mechanics, the last two terms of (3) can be suppressed by using a
coincidence time window which is shorter than the optical path difference of the interferometers.

3 Theoretical Discussion

Our version of the new type of E.P.R. experiment is illustrated in FIG. 1. The photon pair gener-
ated from parametric down conversion is sent through two independent Michelson interferometers
I and II. The optical path differences AL, = L, — S, and AL, = L; - S; can be arranged to
be shorter or longer then the coherence length of each beam of the down conversion field. The
coincidence measurement is between the two output of the interferometers.

The two photon state of the parametric down conversion can be considered as,

= [db [ dksb(k + ks - B)AGR) | K8 | k) (4)
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FIG. 1: Schematic diagram of the experiment
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where k, is the signal, k; is the idler and k; is the pump wave number, the § function comes from
the perfect phase matching condition of the parametric down conversion, A(k) is the wave packet
distribution function and its width determines the coherence length of the wave packet. After
leaving the interferometers, the wave function becomes, :
Y =11dk [dRy6(ky + k3 — k) - A(ky) ,
(5)
[l kaz) | kan)+ | kas) | kas)+ | kar) | kas)+ | kas) | ka))
where | kipg) =] k)" M3,  is the phase shift caused by passage of the wave through the system.
The four terms of state (5) corresponding to the photons which have followed the long-long, short-
short, long-short and short-long paths of the interferometers. State (5) is not an E.P.R. state, the
coincidence rate can be estimated as, R. = Ro | ¥ |2,
R. = R [dkyF(k;) - {1 + cos ky AL, + cos(k, — k;)A Lz
(6)
+1coslky(ALy + ALy) - b ALy + L coslky(ALy — AL,) + kALs)

where | A(k;) |>= F(k,). Function F(k,) will generaly have about the same width as | A(k) |2. If
AL, and AL, are greater than the first order coherence length of the wave packets, the second,
third, and fourth terms in (6) will vanish. The last term contains cos[k; (AL, — AL;) + k,AL;);
consequently, so long as | AL; — AL, | is less than the first order coherence length of the wave
packet, this term gives rise to the interference fringes. If | AL; — AL; | << coherence length
(equal optical path difference) then the visibility of these fringes attain their maximum value of

50%. ,
A similar result can be obtained from a classical model.[6][15] In the classical analog to the

above experiment the electric field leaving the interferometer i will be
E= 715 [ a0 - (e 4 eitSD) (1)
where we neglect the polarization vector. The intensity is given by
1
L= [ dk | Ak) P 1+ cos) (8)

where §; = KAL; = p(L;) — ¢(S;). The modulation as a function of the optical path difference
AL; is determined by the width of the function | A;(k;) | and gives the first order interference

coherence length of the field.
Now suppose the second order interference is measured, the coincidence counting rate R, x<

51 I; >, where the bracket denotes an ensemble average,

< Iy >= [dky [dk; <| Ai(ky) || Aax(ks) >
(9)
-cos *(4) cos ¥(R24l2)
In order to model parametric down conversion it is necessary to account for the correlation in
the two beams that is imposed by the phase matching condition. To do this assume perfect phase

matching and take
<| Ai(k) P| Aa(ka) P>= 6(k1 + ka = k) - G(ks)
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so that
R. = Ry [ dkiG(k1){1 + cos ky AL, + cos(k, — k1)A L,

(10)
+‘.} COS[kl(ALl + AL:) - ’C,AL:] + %COS[k;(ALl - AL;) + k,ALg]}

It is the same as (6) which we have derived from the state (5).

It is not surprising that a classical model gives the same answer as that of quantum mechanics,
because the above calculations have dealt with the wave nature of radiation for both the quantum
and the classical models. However, if one can take advantage of the particle nature of the photon,
the quantum prediction will be different. This idea has been demonstrated in the early polarization
E.P.R. experiment using a coincidence measurement to produce an E.P.R. state.[13] For the two
photon interference experiment a coincidence measurement is not enough to suppress the last two
terms of (5) unless the coincidence time window is shorter than the optical path difference of the
interferometers. Then the registration time difference in which the photons follow the long-short
and short-long paths are outside the time window, i.c., the last two terms of (5) will not be
registered by the coincidence counter.[16] This "cut off” effect will result in an E.P.R. state, which

has no classical analog,

=1 b, [ dkab(hs 4 s = kAR (| b Lozt | rs) | ) 1)
E.P.R. state (11) can provide 100% interference visibility,

To realize 100% visibility, besides equal optical path difference in the interferometers, a pump
field with zero band width is required along with perfect phase matching for the parametric down
conversion. One can easily arrange a narrow enough spectral band width of the pump field by
means of a single mode laser as was done in this experiment, but, in principle, it is impossible to
achieve perfect phase matching. When the finite size of the crystal and the finite interaction time
of the down conversion is taken into account, the § functions of (k) + k2 — k,) and (wy +wy —w,) are
replaced by functions with non-zero widths giving k;, + k; = k, + Ak and w; 4wy = w, + Aw.[17]
In this case (12) becomes,

R. = Ry / dky F(ky) - {1 + cos{ky(ALy — ALy) + k,AL; + AkALy)} (13)

The uncertainty Ak will reduce the interference visibility.
A detailed and careful study of the influence of the coincidence time window and the non-

perfect phase matching can be found in reference (6). For a quasi monochromatic wave model,
which is reasonable for parametric down conversion, the general solution of R, may be written as

R. = Ro{fo+ ficos[ky(ALy — AL;) + k,ALs)} (14)

where we assume that the optical path difference is much longer then the coherence length of
the down conversion beams and ignore the trivial terms. The f’s depend on the detail of the
experiment, in particular the coincidence time window and the uncertainty Ak. For a large
coincidence window, fi/f attains a maximum value of 50%. When the time window becomes
shorter and shorter especially shorter than the optical path difference of the interferometers, f1/fo

reaches 100% for zero Ak.
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4 Experiment

The experimental arrangement is shown in FIG.1. A 351.1 nm single mode CW Argon laser
beam was used to pump a 50 mm long potassium dihydrogen phosphate (KDP) nonlinear crystal
for optical parametric down conversion. The coherence length of the 351.1 nm pump beam was
measured to be longer than 5 meters. The KDP crystal was cut at TYPE I phase matching
angle for generation of w; and w; photons. Both degenerate and nondegenerate (in frequency)
photon pairs have been used in the experiment. In the degenerate case, \y = A; = 702.2 nm.
The emission angles were about 2° relative to the pump. In the nondegenerate case,632.8 nm
and 788.7 nm signal and idler pair were generated. The signal and idler photons were emitted
at angles 1.8°and 2.3°relative to the pump beam, respectively. The signal and idler photons then
were selected by pinholes and sent to two independent Michelson interferometers I and II. The
interferometers are 5 m apart in order to have space-like separated detections. Two Geiger mode
avalanche photodiodes D, and D, with 1 nm spectral filters (centered at 702.2 nm for degenerate
case and 788.7 nm and 632.8 nm for nondegenerate case, respectively) were used for monitoring
the first order and the second order interferences by means of direct counting and coincidence
counting. The coincident circuit provides 20 psec, 50 psec and 3 nsec time window. N;, N, N.
which corresponding to the number of counts from detector 1, detector 2 and from the coincidence
time window were recorded simultaneously. The above measurements have taken advantage of the
state-of-the-art millimeter lunar laser ranging high resolution timing diagnostic technique, which
has been developed at the University of Maryland.

The optical path difference AL, = Ly — L; and AL; = L3 — S; of the two independent
Michelson interferometers I and II can be changed by step motors continually from white light
condition to about 7.2 mm which is longer then both the coberence length of the down converted
fields and the 20 psec time window. It is also possible to move one of the mirrors discontinuously
to a maximum AL = 12 cm.

The experiment was performed in two steps. First, we used a 50 psec and a 3 nsec time window
simultaneously for the coincidence measurement. By comparing the interference visibilities for
AL > 1.5 an between the 50 psec and 3 nsec coincidence window, we expect to see the "cut off”
effect.702.2 nm, photon pairs were used for the first step measurement.

1: AL; < coherence length
We have measured the first order and the second order interference visibilities when both AL,

and AL; were shorter than the coherence length of the field. We have also measured the first and
second order interference visibilities when the optical path difference of one interferometer was
shorter than the coherence length and that of the other was much longer than the coherence length.
Fig. 2 (a,b) shows the second order and the first order interference visibilities with AL;= 5 mm
and AL, scanned starting from the white light condition. 97% second order and 82% first order
interference visibilities were observed at the beginning of the scan. All reported values are directly
measured without noise reduction and theoretical corrections.

2: AL; > coherence length

Fig. 3(a,b,) reports two typical second order interference visibility measurements in which
AL;was set to a value which was longer than the coherence length and AL, was scanned from
white light condition. For each data point, the visibility was calculated from measurements similar
to these shown in fig. 2. It is clear that the interference disappeared at about AL, = 500um which
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Fig. 3(a): Second order interference visibility with 50-psec coincidence window
(AL;= 1.8 mm, AL, scanned from white light condition).
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Fig. 3(b): Second order interference visibility with 50-psec coincidence window
(AL;= 4 mm, AL, scanned from white light condition).
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corresponding to the first order coherence length of the field (determined by the band width of
the spectral filter) and reappeared around AL, = AL,. These measurements were repeated many
times.

Fig. 4 and table 1 report the second order interference visibility measurement for AL, = AL,
with 50 psec time window and 3 nsec time window. The interference visibilities were measured to
be (38 £ 6)% and (21 + 7)% for the 50 psec window and (22 + 2)% and (7 + 3)% for the 3 nsec
window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively.
The ratios are about 1.7 + 0.3 for AL = 2 cm and about 3.0 + 1.6 for AL = 4 am, respectively.
The "cut off” effect is clearly demonstrated. However, we still need a visibility more than 50% in
order to have a unambiguous quantum result.

The second step of the experiment used a 20 psec coincidence time window. Higher interference
visibility ( >50% ) was expected at AL > 6 mm. In this experiment, 632.8 nm and 788.7 nm photon
pairs were used for the measurement. The wavelength 632.8 nm was used for easy alignment. We
used a CW He-Ne laser beam as input signal to match the 632.8 om down conversion mode. Both
632.8 nm and 788.7 nm radiation have much longer coherence length due to the stimulated down
conversion (or so called induced coherence). The parametric amplified signal and idler radiation
were used for careful alignment. High visibility first order interference of the stimulated down
conversion beams were observed before taking date.

Fig. 5, 6 and 7 report the experimental results. Fig. 5 (fig. 6) is a typical measurement in
which AL,(AL;) was fixed at 7 mm and AL3;(AL,;) scanned around 7 mm. Fig. 7. reports the
measurement in which both interferometers were scanned around 7 mm. The 7 mm optical path
difference was much longer than the coherence length of the down conversion beam, no first order
interference can be observed in N, or N3, however, the coincidence measurement N, showed clear
interference fringes in the above measurements. The fringe visibilities are 59% with a period of
632.8 nm and 59% with a period of 788.7 nm for the type of measurements in fig. 5 nd fig. 6,
respectively. When both AL, and AL, are changed together the visibility is 58% with a period
of 351.1 nm. The solid curves in fig. 5, fig. 6 and fig. 7 are the fittings for 632.6 nm,788.7 nm and
351 nm, respectively. The standard deviation for these measurements is about 2%.

In summary:

1. The existence of E.P.R state has been observed by means of:

(1). the "cut off” effect, i.e., the interference visibility comparison between 50 psec and 3 nsec
coincidence time window.

(2). direct measurement of more than 50% interference visibility for a 20 psec coincidence
time window. This is the first observahon of visibility greater than 50% for the two independent
interferometers experiment.

2. The second order interference coherence (second order in intensity fourth order in field) is
not limited by the coherence length of the pump beam only, but also by the non-perfect phase
matching of the parametric down conversion. The uncertainty of the correlation in frequency
determines the second order coherence length. We believe it is the non-perfect phase matching
of the down conversion that reduced the visibility of the second order interference fringes in our
experiment.

We acknowledge many fruitful discussions with C. O. Alley. This work was supported by the
Office of Naval Research under Grant No. N00014-91-J-1430.
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TABLE I: Second order interference visibility for equal optical path difference with
50-psec and 3-nsec coincidence time window.

Second Order Interference Visibility

Equal optical path difference
Li-51=1L;-%;

L;-§; 3-nsec 50-psec Visibility ratio
(mm) window window (Vs0-peec/ V3-05ec)
0 05 1N% 97 £ 3)% 1.02 £ 0.03
1.1 (39t 2)% (46 £ 5)% 1.18 £ 0.14
1.8 40+ 2)% 471x5% 1.17+0.14
4.0 B3+2)% 42 L5% 1271+ 0.17

20.0 22+2)% 38t 6% 1.72 £ 0.32
40.0 T+3)% 21 D% 3.00+1.63
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Fig. 4: Second order interference visibility for equal optical path differences with
50-psec and 3-nsec coincidence time window.
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Fig. 5: Second order interference fringes for 632.8 nm (AL, = 7 mm, AL; scanned
around 7 mm, 100 second for each point) with 20-psec coincidence time window.
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ON A LAGRANGE-HAMILTON FORMALISM
DESCRIBING POSITION AND MOMENTUM UNCERTAINTIES
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Abstract

According to Heisenberg’s uncertainty relation, in quantum mechanics it is not possible
to determine simultaneously exact values for position and momentum of a material system.
Calculating the mean value of the Hamiltonian operator with the aid of exact analytic Gaus-
sian wave packet solutions, these uncertainties cause an energy contribution additional to
the classical energy of the system. For the harmonic oscillator, e.g., this nonclassical energy
represents the ground state energy. It will be shown that this additional energy contribution
can be considered as a Hamiltonian function, if it is written in appropriate variables. With
the help of the usual Lagrange-Hamilton formalism known from classical particle mechanics,
but now considering this new Hamiltonian function, it is possible to obtain the equations of
motion for position and momentum uncertainties.

1 Introduction

According to quantum mechanics it is in principle impossible to simultaneously determine the ex-
act values of two canonically conjugate variables like position and momentum. These values can
be given only with a finite uncertainty, a mean square deviation or fluctuation (%) = (z?) — (z)?
and (52) = (p?) — (p)?, where the brackets (...} denote quantum mechanical mean values. The
lower bound of these uncertainties, the minimum uncertainty product is defined by Heisenberg’s
uncertainty relation

U= @ 2 0

In this paper the most simple but also most important one-dimensional problems, the free motion
and the harmonic oscillator (HO) will be discussed in detail (the results for the free motion can
be obtained in the limit w — 0, where w is the frequency of oscillation). The corresponding
time-dependent Schrédinger equation (SE) (in position space),

ih 9 U(z,t) = H,, ¥(z,t) = {—-"12—3—2 + V} ¥(z,t) (2)
ot ’ ® ’ 2m 0z? Lo

has exact analytic Gaussian-shaped wave packet-type (WP) solutions ¥(x,t). The uncertainty of
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position, reflecting the wave aspect, causes the finite width of this function, which can be time-
dependent as it is known from the spreading of the “free-particle” WP. The particle aspect is
expressed by the fact that the maximum of the WP follows the trajectory of the corresponding
classical problem.

Calculating the mean value of the Hamiltonian operator H,p with the help of the Gaussian
WPs to obtain the energy of the system,

(B) = (Hp)= 5= () + 2o ()

2
= (m 0P+ T ) + (e () + 2 () 3)
= E4+E.

the uncertainty of position and momentum causes, that in addition to the classical energy E,, a

contribution E occurs.

In classical mechanics, the (conserved) energy E, of the system is equivalent to the Hamilto-
nian function, E,; = H, which also determines the dynamics of the system via the Hamiltonian
equations of motion.

In this work, it will be shown that in analogy to classical particle mechanics, the additional
contribution E in (3) can be considered as Hamiltonian function for the position and momentum
uncertainties. Therefore, the dynamics of these properties reflecting the (nonclassical), wave
aspect, i.e. the equations of motion, can be obtained from this Hamiltonian function in exactly
the same way as it is known from the formalism for classical particles.

For this purpose, E has to be expressed in terms of appropriate variables and corresponding
canonically conjugate momenta to provide the Hamiltonian ;.

2 Appropriate Variables for the Uncertainties

Using the Gaussian WP-solutions of the SE, exact analytic expressions for E,; and E can be ob-
tained. In the case of the HO E just represents the groundstate energy, usually given in the form
Egs = %hw However, there is much more information contained in E, especially connected with

the dynamics of position and momentum uncertainties. In order to extract this information, the
Gaussian WP used to calculate the mean values shall be given in the form

Vale,) = Nteap (i) + 1003 + K@} | ()

where £ = 1 — (z) = z — n(t) (the explicit form of N(t) and Kﬂt) is not relevant for the following
discussion). The maximum of the WP at position x = (r) follows the classical trajectory n(t).

The WP width 1/(Z?) is connected with the imaginary part y; of the complex coefficient of 2 in
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the exponent, y(t), via

2h B 1
m YT @ T 5)

Inserting the WP into the SE proves that (z) = n(t) obeys the classical Newtonian equation for
a corresponding point particle,

T+win=0. (6)

To determine the time dependence of the WP width, the complex (quadratically) nonlinear equa-
tion of Ricatti-type,

2k . 9
;y+(;y)2+w’=0, (7

has to be solved. With the help of the new variable a(t) introduced in Eq.(5), the complex Ricatti
equation can finally be transformed into the real (nonlinear) Newton-type equation

&+w2a=—l—. (8)

ol

In contrast to the equation for the WP maximum, Eq.(6), the equation for the QP width, Eq.(8),
contains an inverse cubic term on the rhs.

Additional insight into the dynamics of the investigated systems can be obtained by linearizing
the Ricatti equation (7) with the help of

—y=;a (9)

introducing a new complez variable A = 4 + i = ae', to provide the complex linear equation of
motion

X4+ wr=0, (10)

which has exactly the same form as Eq. (6), but now for a complex variable.
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It can be shown [1-3] that in cartesian coordinates, % is directly proportional to the classical
trajectory,

0B _ () = n(t), a

and in polar coordinates, the absolute value a is identical with a(t) = (2m(z?)/ A1)} from Eq. (8),
and thus directly Proportional to the WP width.

Furthermore,  and # (in cartesian coordinates), or a and ¢ (in polar coordinates), respec-
tively, are not independent of each other, but coupled via the relation

Mi-dt=adlp=1. (12)

The physical meaning of this relation is that A(t) moves in the complez plane like a particle in a
real two-dimensional plane with conserved angular momentum. Therefore, the 1/a-term in Eq.
(8) represents the “centrifugal force” for this motion in the complez plane.

3 Lagrange and Hamilton Functions for Uncertainties

In Eq. (5) it is shown how the mean square deviation of position, (%), is connected with y; or
(and thus )), respectively. In a similar way the momentum uncertainty (p?) is connected with yr

and y; or & and ¢ (and thus A, respectively, via
_ 2 +y} hm ., hm - .
() =t Bt = 22 (M) = I (o2 4 o) (13)
Therefore, the energy contribution E can be written as

E=<(\ +u? A)) = g(dz2 + a?p? + wia?). (14)

N

Assuming that a and ¢ are the required appropriate generalized coordinates, still the canonically

conjugate momenta have to be determined in order to express E in a proper Hamiltonian form. In
analogy to classical mechanics, a Lagrangian function for the position and momentum uncertain-
ties can be obtained by simply changing the sign of the potential energy contribution into minus,
leading to

z .. _h . :
£L(as ¥, a, ‘P) = Z (02 + G2¢2 - wﬂaﬁ) . (15)
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Thus, the generalized momenta are given by

9, B . _
P& ~29 7 P (16)
56 —3%¢f =P (17)

With the help of these definitions, the energy fluctuation E can be written in the correct Hamil-
tonian form

2 2
v _Eg Py E 2.2
'HL—h+ha2+4wa. (18)

This Hamiltonian function 7z, provides the equations of motion for the variables describing the
wave aspect in exactly the same way as the classical Hamiltonian function of particle mechanics
yields the equations of motion for the variables describing the particle aspect.

In addition, an interesting consequence follows from Eq. (17), defining the angular momentum
p,. As mentioned in the previous section, this is an angular momentum property connected with
the motion of A in the complez plane under the additional condition, that the “conservation law”
¢ = X is fulfilled.

However, inserting this into (17) shows that the conserved angular momentum-type quantity
p, has the constant value

, (19)

e

Po =

a value that usually does not describe an orbital angular momentum but the nonclassical angular
momentum-type property spin!

Furthermore, it should be mentioned that the uncertainty product (1), if it is written in terms
of the new coordinates and momenta, takes the form

U(t) = pj + (apa)’ - (20)

From Eq. (19) follows that p2 = h%/4, i.e. it is just the (constant) minimum uncertainty. The
second term, however, represents the square at the position-momentum correlations, as

&

[}
L
Q)lq,

" (M) = haa = 2 (apa) (21)
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is valid.
For p, = 0 and thus & = 0, i.e. the WP width is constant and no correlations between position
and momentum exist.

4 Conclusions

The information on the dynamics of the considered systems contained in the time-dependent SE
can also be obtained from a corresponding Newtonian equation for these systems, if a complex
variable is used, where the imaginary part of this variable is proportional to the classical trajectory
and the real part is uniquely connected with the imaginary part. The connecting relation expresses
a kind of conservation of angular momentum for the two-dimensional motion in the complex plane.

In polar coordinates, the absolute value of the complex variable, af(t), is directly proportional

to the WP width 4/ (:;2), and thus to t)flériljﬁce:i’féi'nty (;7) )

It is possible to express the difference between the mean value of the Hamiltonian operator,
(Hop), and the classical energy, E,;, in terms of the coordinates a and ¢ and the corresponding
canonically conjugate momenta. Thus, it is possible to write £ in the form of the Hamilonian
function Hy, where from the correct equations of motion for the “wave properties” (uncertainties)
can be obtained in exactly the same way as the equations of motion for the particle properties
can be obtained from the classical energy, respectively Hamiltonian function.
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Abstract

The problem of a quantum particle coupled to a quantum-mechanical heat bath has a
broad and general description in terms of a generalized quantum Langevin equation, as
described in a series of papers by Ford, Lewis and O'Connell. Here we show how a squeezed-
state environment may be incorporated in this general framework.

1 INTRODUCTION

In a paper entitled "Quantum Langevin Equation”, Ford, Lewis and
O'Connell [1] gave a broad and general description, in terms of a generalized
quantum Langevin equation (GLE), of a quantum particle, moving in an
arbitrarily external potential and coupled to a quantum-mechanical heat bath.
Related papers included an extension incorporating the presence of an external
time-dependent field [2]. In Ref. 1, we presented the general form of this
equation consistent with fundamental physical requirements, in particular
causality and the second law of thermodynamics. Next, we discussed an
independent-oscillator (I0) model of the heat bath and we showed that, in
addition to being a simple and convenient model with which to calculate, the
most general GLE can be realized with an 10 mode!. In addition, the 10 model
incorporates many other models that have appeared in the literature, in
particular the blackbody radiation heat bath.

In the 10 model, the quantum particle is surrounded by an infinitely large
number of heat-bath particles, each attached to it by a spring. In Ref .1, the
heat-bath is taken to be at temperature T. Here, we assume that the modes of
the bath are squeezed and our purpose is to outline what aspects of Ref. 1 need
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to be modified as a result. As it turns out, the only changes occur in expressions
involving ensemble averages, specifically the autocorrelations of the random
(noise) force F(t) and the oscillator position x(t).

2 DISCUSSION

As before, the Hamiltonian of the 10 system is

_._Fﬁ _p;?_ 1 me2in. - v\2
H_2m+V(x)+§i: 2mj+§m,wj(q, x)2| (1)

Here m is the mass of the quantum particle while m; and ; refer to the mass and
oscillator frequency of heat-bath oscillator j. In addition, x and p are the
coordinate and momentum operators for the quantum particle and gj and pj are
the corresponding quantities for the heat-bath oscillators. Also, V(x) is a one-
dimensional potential (but generalization to three dimensions is

straightforward([1]). Use of the Heisenberg equations of motion lead to the GLE
describing the time development of the particle motion:

t
m¥ + I dt it - £)x() + V(x) = F(t), 2)

-0

where the dot and prime denote, respectively, the derivative with respect to t
and x. In addition, p(t) is the memory function:

i) = 2 mjwfcos (w)8(t), (3)
[

where 8(t) is the Heaviside step function. Also

F(t) = 2, mefaf(t) (4)
]

is the random (fluctuation) force, where qjh(t) denotes the general solution of the

homogeneous equation (corresponding to no interaction). In Ref. 1, to find the
expression for the (symmetric) autocorrelation of F(t), we assumed that in the
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distant past the oscillators are in equilibrium at temperature T and with respect
to the heat-bath Hamiltonian. This led to the result

W F(t) + Fr) Ft)

= % I do Rl (o + i0%) (5)

0
x coth (hw/2kT) cos [w(t - t)],

where p(w) is the Fourier transform of the memory function u(t). To get the
corresponding result in the case of a squeezed bath, we essentially have to
generalize the expressions for <qjqx> etc. appearing in Eq.(4.12) of Ref. 1. To
this end, it is convenient to use the familiar oscillator operators a, a* and g, aj" .

As a result, using the procedure of Ref. 1, we obtain

%—<F(t) F@t) + F(t) Ft)>

= D, hmj o{(<a} aj> + 1/2) cos wj(t - 1)
J
+ Re <aj 8> cos wj (t +t)

+Im <aj ap> sin o (t - t)}

= ;%j dw Re [(w) ho {<a+(w) a(w) + 1§>) cos ot - ')

° + Re <a(w) a(w)> cos o (t + 1) (6)
+Im <a() a(w)> sin o (t + t')},
where the second equality follows from the use of the expession for Re o)
given by Eq. (4.16) of Ref. 1.

In the particular case of the bath being in a thermal state, at temperature

T, the last two terms on the right-side of Eq.(6) are zero and Eq.(6) reduces to
Eq.(5). Inthe case of a squeezed bath, all of the terms in Eq.(6) are non-zero
and detailed expressions for the various quantities may be found, for example,
in the work of Gardiner et al. [3].
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As in the case of a thermal bath, the result for the symmetric position
autocorrelation viz. 1/2 <x(t) x (t') + x(t') x(t)> is given by the right-side of Eq.(6)
except that the integrand has an additional factor |(w)2, where a(w) is the
generalized susceptibility. Such a relation is, in essence, a generalization of
the fluctuation-dissipation theorem to the case of a non-thermal bath.

In conclusion, the results of Refs. 1 and 2, supplemented by Eq.(6) of the
present paper, provide a general framework for discussing the problem of a
quantum particle in a heat-bath whose modes are squeezed.
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Abstract '

The notion of squeezing in spin systems is clarified and principle for spin squeezing is
shown. Two twisting schemes are proposed as building blocks for spin squeezing and are
shown to reduce the standard quantum noise, %, of the coherent S-spin state down to the
order of $'/3 and . Applications to partition noise suppression are briefly discussed.

1 Introduction

First, we will review the uncertainty relations and coherent states of spin [1] compared to those of
boson. Then we will define squeezing in spin systems and show the principle for spin squeezing [2].
Secondly, we will propose fundamental schemes for spin squeezing, namely, one-azis twisting and
two-azis counter-twisting, and discuss their limits [2]. Finally, applications are briefly discussed.

2 Uncertainty Relations — Spin vs. Boson —

Let us begin by comparing spins and bosons with respect to their uncertainty relations (TABLEL)
The spin commutation relation is [S;, S,]=15). where Si .k are orthogonal spin components and the
relation holds for any permutation of 1, j, k. The same is true for associated uncertainty relations,
(45.2)(AS5,;%)>|(Ss)|?/4. This is quite different from the boson uncertainty relation since the right
hand side (RHS) is state-dependent [3].

The coherent states can be defined as the minimum and equal uncertainty state; the state that
minimizes the left hand side with the two uncertainties being equal. The eigenstate of the spin
component of a certain direction (6. ¢). S5 ,=S, sin 8 cos ¢+ S, sin 8 sin ¢+ S, cos 6. with eigenvalue
S satisfies this condition if Sy is the eigen component (which is S) and S, and S, are normal
components (whose variances are 5/2). This state is called a coherent spin state (CSS). Bloch
state, or directed angular momentum state [1].

Before talking about squeezing. let’s look at the linear motions. A linear Hamiltonian propor-
tional to an arbitrary spin component rotates the spin vector about an axis. This is a precession.
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TABLE 1. Spin vs. boson with respect to uncertainty relation, coherent state and squeezing

Spin Boson
sin‘ = S i1 d;) = 2
Uncertainty [ Jl]} o “ a,}} v
Relations (ASUAS,) > |(Su)[2/4 (Aa;*)(Aa;?) 2 1/16
Sesl0,4) = SI0. ¢) ala) = ala)
z a2
Coherent
States 0 a
(4a}) = 1/4
az
vt
Translation ) ay
H = 108, H= hiva‘ + H.c.
X (457 <{Su)l/2 Aa?) < 1/4
(45,7 < §/2 et it
Squeezed
States 0 &
az
Squeezing - 0 é *1

a,(t)=G1a;1(0), a(t)=Ga;(0)
H = hix(a')* + H.c.
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It is regarded as a translation of the state on the spherical phase space of the spin. Although the
rotation may change the uncertainties of the original spin components. the coherent spin state
remains the minimum and equal uncertainty state as long as the component on the RHS is taken
parallel to the mean spin vector.

Now let’s discuss squeezing in a spin system. In a boson system, it is always regarded as
squeezing if a certain quadrature amplitude has a variance smaller than the square root of the
RHS of the uncertainty relation; that is 1/4. If we define the squeezing of spin likewise 4] —a
certain spin component has a variance smaller than the square root of the RHS — we can squeeze
the spin by just rotating it. If this were really squeezing, the experimentalists would be very
happy since they could do this easily. Unfortunately, it doesn’t offer any improvement beyond the
standard quantum limit.

The quantum limit of spin systems can be attributed to the directional uncertainties of the
spin vector. Therefore the uncertainties normal to the mean spin vector are the relevant quantities
to be squeezed. To eliminate the superficial coordinate dependency, we write the criterion of the
spin squeezing as (45,%) < S/2 (one of the component normal to the mean spin vector has a
variance smaller than S/2) (2].

The next problem is how to squeeze the spin. Boson squeezing is regarded as attenuation of
one quadrature amplitude and amplification of the other by the same factor. This can be done
by a degenerate parametric amplifier described by a quadratic nonlinear Hamiltonian. Geomet-
rically it is an area-preserving linear transformation on the boson phase space R?. The global
shrinking/stretching is possible because boson phase space is an open plane.

In the spin case. permutative commutation relations obviously prohibit such a simple atten-
uation/amplification. In other words, global shrinking/stretching is impossible on the spherical
phase space S of spin. The squeezing of spin is inevitably localized in phase space and, therefore,
can be quite different from that of bosons. -

3 Squeezed Spin States

Let’s see how spin can, in principle, be squeezed. An S-spin system can be considered as a
collection of a number, 2S, of 1/2-spins. In the coherent spin state pointing up, all spins are

“up (Fig.1 (a)). Therefore the z—component of the total system is S. However, whether the x-

component of each spin takes 1/2 or -1/2 is completely independent and random. Therefore the
variance is simply the sum of individual variances, 1/4, which is S/2. The same is true for the
y-component. These uncertainties are the origin of the standard quantum noise of the CSS. The
spin vector S is like a cone rather than an arrow. The diverging angle of the cone decreases with
increasing S, since the base radius of the cone is proportional to \/g

In practical applications. it is desirable to reduce quantum noise for a given S. We have just seen
that the origin of the standard quantum noise is a lack of quantum correlation among individual
spins. If they are correlated, fluctuations of individual spins can cancel each other out (Fig.1 (b)).
We refer to such a state as a squeezed spin state (SSS) [2]. Such a state can be conceived as an
elliptical cone [5].

One way to establish the quantum correlations among individual spins is to let them interact
with each other. This is a nonlinear interaction. Another way is to let them interact with an
already correlated svstem such as squeezed light.
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X(C)oherent Spin State X“Squeezed Spin State
a ' (b)

FIG. 1. Quantum correlation and spin squeezing

3.1 One-axis twisting

Let'scons:der_ ghe simplest ho_nlﬁingal;iﬁ;(ﬁflﬁtonian, the squa,reofaspm component, for example,
H = hxS?. This interaction leads to S, (u) = S,(0)expiu(S, + %)], a rotation proportional to
S:. where 4 is the strength of the interaction. If the initial state is on the equator of the sphere

(Fig. 2 (a)), the interaction twists the noise distribution (Fig. 2 (b)).

(a) u =0, CSS |%,0) (b)yp= 0.2 (optimum) (c)p= 0.4 (ezcessive)
FIG. 2. Quasi-probability distribution Q(f, ¢) [6] for one-axis twisting. (S = 20, u = 2xt).
The increased and decreased variances are,

S
Vi = 5(#5)2

S
Voox S [wS)T + S)] 2 s

©
.:."‘

squeezing  swirliness  (at p = 241/65-2/3)

where uS > 1 and 4?S <« 1 are assumed. The noise distribution is stretched by a factor of uS in a
certain direction, while it is shrunk by the same factor in the orthogonal direction. This is nothing
but squeezing. However, the stretching of the distribution is not exactly along a geodesic of the
sphere, it is slightly S-shaped. The second term arises from this non-ideal effect. swirliness. The
deviation from the geodesic becomes comparable to the reduced width of the distribution when p
is increased to the order of S=2/3. Then the variance reaches its minimum of 5/3. Because of the
swirliness, it is impossible to further reduce the quantum noise by means of one-axis twisting.
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3.2 Two-axis counter-twisting

The swirliness can be canceled out if we twist the noise distribution simultaneously clockwise and
counterclockwise about two orthogonal axes both normal to the mean spin vector (Fig. 3 (b)).
This can be done, for example, by the following Hamiltonian,

hx
H = hx(S;.‘;z - S;”_%?) = E(Si - SZ)
We refer to this as two-axis counter-twisting. The noise distribution is shrunk along a geodesic

and stretched along the orthogonal geodesic until it spans almost half the sphere. If we twist the
distribution more, it splits into two and no further improvement occurs.

(a) p =0, CSS |0,0) ‘(b) = 0.203 (optimum) (c) p = 0.248 (excessive)
FIG. 3. Quasi-probability distribution Q(8, ¢) for two-axis counter-twisting. (S = 20, u = 4xt).

3.3 Limits of noise reduction

. 50 =)
Let’s compare the minimum variances of two . 5
kinds of squeezed spin states. The dots show 20
the exact minimum attainable variances cal-
culated numerically (Fig. 4). The variance .10
of the ordinary coherent spin state increases >E 5 %
linearly with S. One-axis twisting can reduce .
it to the order of $'/3. Two-axis counter- 2 one'a*‘s
twisting can further reduce it to 1/2. ’
2 5 1 50 100 _
0.5 '.'.....- S _— X!

FIG. 4. Minimum variances vs. S

4 Applications to Partition Noise Suppression
There are many systems which can be described as a spin system. Spin squeezing described

here offers better performance in these systems. For example, dispersion-less beamsplitters and
interferometers for bosons and fermions can be described as a spin system with S being the
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half of the total particle number N passing through them {7, 5]. The operator S, corresponds
to the half of the particle number difference N4 — Np between two paths (A and B), and S,
transfers a particle from one path (A) to the other (B). The outputs of 50% beamsplitters (i.e.,
(Sz) = 0) have the number and phase partition noises N=([A(N4 — Ng)))/2=2(AS,%)/? and
s0={[A(¢a — 88))°)/*~{AS,%)*/?/|(S.)|. For ordinary linear beamsplitters, they are N=v/N
and §¢=1/+v/'N since the output is in CSS [r/2,0). Their ratio can be changed by spin squeezing
without violating the uncertainty principle §N§¢ > 1. Physically, they can be realized as nonlin-
ear interferometers. Both self-phase-modulation H;=hx(N3 + N3)=2hx(N?/4+S?) of particles
in both paths and mutual-phase-modulation H;=hxN ,Np=hx(N?/4 — S?) between particles in
different paths lead to one-axis twisting. Optical Kerr effect and Coulomb interaction give these
number-dependent phase modulations. These nonlinear beamsplitters can achieve either N N1/6
or 6¢=N-%/6 [8].

5 Summary

In summary, We have clarified the notion of squeezing in a spin system. Spin is squeezed if one of
the components normal to the mean spin vector has a variance smaller than S/2. We have shown
the principle for spin squeezing. The spin can be squeezed by establishing quantum correlations
among elementary spins. We have proposed the fundamental schemes for spin squeezing. One-axis
twisting can reduce the noise down to S/3 and two-axis counter-twisting can reduce it to 1/2.
We have also discussed possible applications of spin squeezing to the sub-quantum-limit partition
of quanta. Partition noise in either particle number or phase can be suppressed with a nonlinear
beamsplitter which performs spin squeezing.
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Abstract

We compute the quantum entropy for monomode and two-mode systems set in squeezed
states. Thereafter it is also calculated the quantum entropy for angular momentum algebra
when the system is either in a coherent or in an intelligent spin state. These values are
compared with the corresponding values of the respective uncertainties. In general, quan-
tum entropies and uncertainties have the same minimun and maximun points. However for
coherent and intelligent spin state it is found that some minima for the quantum entropy
turn out to be uncertainty maxima. We feel that the quantum entropy we use provide the
right answer since it is given in an essentially unique way.

1 INTRODUCTION

Some years ago Deutsch [1] proposed a new definition for the quantum uncertainty of a physical
observable which immediately was taken up by Partovi [2] to carefully analyze the measurement of
the system (x,p). Time ago, trying to understand the physical properties of supercoherent states
[3] we started to call this new quantity S(®, |y >) = - < ¥l > *In| < ¢|p > |? the quantum
entropy of the system & in the state | >. In this article we keep using this notation which we feel
is more appropriate. There will not be any sort of ambiguity with the standard use of the density
operator for the statistical quantum entropy since in the following calculations we will only deal
with pure states.

Our motivation is to go further with the quantum entropy and to calculate its values for
Physical systems less trivial than the monomode (x,p) one. We take the two-mode system when it
is set on a two-mode squeezed state and the non-canonical, finite, angular momentum algebra of
observables when it is either in a coherent (CSS) or in an intelligent spin state (ISS). Thereafter

1Talk given at the Squeezed States Workshop, U. Maryland 28-30 march 1991
Fax address:(58) (2) 9621695; e-mail emscalusblaragone@sun.com
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we estimate the (Heisenberg like) uncertainties 7 of these different systems and compare them
with those previously obtained for the quantum entropy. Roughly speaking S 2 In7 implying
coincidence of their extremals. It will be seen that, however, for ISS, it happens that states which
minimize the quantum entropy are local maximuns for corresponding uncertainty.

In the next section we study the continuous, canonical cases of monomodal and two-modes
systems. The third section deal with the three-dimensional angular momentum algebra. In the
last one we discuss the results we have obtained.

The problem we are interested in is to compute the quantum entropy S(®, |y >) of different
physical systems ® = {(z, p); (z4,p+);(Ji)} and if possible to determine the states for which
S(®, |4 >) attains its minimum. In this work we do not solve this problem in its full generality.
We calcule S(®,|¢ >) for some subspaces of | > and we find the states belonging to these
subspaces for which S is extreme. We take the oportunity to compare with uncertainty functionals
naturally related to these systems. It is worth pointing out what is the origin of the states we
consider: all of them arise through the Heinsenberg relations, either by minimizing uncertainty
functionals I(A, B, |y >) or by introducing intelligent states, i.e. those states which satisfy the
functional equation I(4, B, | >) = C([4, B], |¢ >) (C is given below).

2 ONE AND TWO MODE SQUEEZED STATES

This is the continous and canonical case. We start considering the monomodal case, where &, =
{z,p} and the states |¢ > for which we calculate S(®, | >) are the squeezed states [4] (SS)
(note the SS arise from the Heinserberg uncertainty relation). If we denote by |z > the standard
coherent states

|z >= D(a,2)|0 >, D(a,z) = exp{zat - z"a}, (la,1b)

the SS are defined
‘Z, ry >= 51(",90”2 >y (1C)
Si(re) = exp(gr(eat - e™¥(al))’) (14

If one introduces the squeezed annihilation operator a(r,¢)
a(r, ) = Si(r, cp)aSlt(r,ga) — coshr a+e**sinhr af, (2a)
the SS turn out to be their eigenvector with eigenvalues z,
a(r, )|z, rp >= z|z,rp > . (2b)
Following Deutsch the quantum entropy S(®,, |y >) is defined by
S(®y, ¢ >) = S(z,|z,rp >) + S(p,|z,r¢ >) (3a)

where o
S(z, |z,re >) E—/ | < z|z,rp > In| < z|z,r¢ >)[2dz
—00
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=27 (1 +In{r(Rey)™'}), (36)

S e >) == [~ 1<plnre > Plal < plz,re >)Pdp

= 27'(1 + In{x(Ren)™}), (3¢)
where . .
= (coshr + e¥**sinh r)(cosh r — sinhre?*)=!, 47! = y(—r,¢). (34d)
Consequently S has the value
S(®1, ¥ >) =1+Inx+27"In{1 + sinh? 2rsin? 2p}. (4)

S(®1,|z,re >) attains its minimun 1 + In x in two cases: i. if r=0, i.e. for pure coherent states
since |2,7¢ >= |z > orii. if ¢ = nx/2, n € Z which corresponds to the proper SS. In both cases
one gets what it has been shown [5] to be the minimun of the quantum entropy for this simple
system.

To obtain the final results is eqs. (4a-b) we have used that [6]

v{|z,re >}(z) =< z]z,rp >=

= r‘*(Re‘y)% exp(—i?'%lm z) exp(i2%1m z)exp{—-12"Y(z - 25}232)2} (5a)
¥{lz,r¢ >Hp) =< plz,re >
= r~t(Rey V)t exp(i2-¥Im z)exp(—i2%1m z)exp{—(27)"(p - 2%Imz)2}. (5b)

The two-mode system ®; = {z;,p;,i € (1,2)} has two annihilation and two creation operators
a,a,;,
lai,a] = 85, lai,a;] =0 (6)

The two-mode coherent states are defined by
|z >= D(a,2z)|0 >2= (D(a1,21) ® D(ay,22))|0 > ®[0 > (7a)
where in an obvious two-dimensional vector notation
alz >=12z|z >, a=(a; ® laxz, l2x2 ® a3) (7b)
The two-mode SS are given by
|z, re >= Si(r, )z >, (8)
Sa(r, ) = exp{r(e *¥aa; — e"”atat)}.

Observe that S;(r,y) contains (al,a:f ) corresponding with two modes we have now in the system.
It is possible to generalize egs. (2) to

a(r,p) = Sy(r, ga)aSJ(r, @) = coshr a+ e*sinh ra,at, (9a)
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a(r,¢)|z,re >=zlzre > . (9%)

these eqs. are based upon

s} (r,¢)D(a,2)S:(r,¢) = D(a, M(r,¢)z) = D(a,w), (10a)
where M(r, ) is defined by
w = M(r,p)z = coshr z — e**sinhroyz = (e, BT (108)

(o, is the standard antidiagonal Pauli matrix). Computation of S(®,,|z,re >) entails the eva-
luation of S(x,|z,ry >) and S(p, [2,r¢ >),

S(®3, |z,re >) = S(x,|z,re >) + S(p, |z, re >)
= -/|< x|z, rp > [Pln| < x|z, re > [Pd’x

—/l < plz,r¢ > |*In| < plz,r¢ > [*d’p

=2{1+lnhx+2'In{l + sinh? 2r sin? 2p) = 25(®,, |z,r¢ >). (11)

As it happened for the monomodal case, there are two cases where the entropy has a minimun:

i. for r = 0, wich corresponds to two-mode coherent states and ii. for ¢ = nn /2, these are the
proper two-mode squeezed states. Calculation of S(¢3,|z,r¢ >) (11) becomes straightforward
after deducing the two (dual) representation of the wave functions < x|z,ry >, < plz,re >. It

can be seen that
| < x|z, r¢ > [ = 77 Rea{l — (ReB)}(Rea) *}}-

-exp{—Rea(x - 2%}2‘ew)2 — ReB(x — 2% Rew)T o (x — 2%Rew)} (12a)
| < plz,r¢ > | = 7 'Rea{l - (Reﬂ)z(Rea)z}%-
.exp{—Rea(p — 2} Imw)? — Ref(p - 92} Imw)T oy (p — 25 Imw)} (12b)

The uncertainty I(z, p, |z,r¢ >) for the monomodal case is the standard quantity (Az)*(|z,r¢ >)
(Ap)*(Jz,rp >). It turns out to be
I{(®,,]z,7¢ >) = 47'(1 + sinh? 2r sin® )

Consequently, since S(®;,|z,r¢ >) & C1 + 2-11n I(®,, |r¢ >) we observe that their minima
coincide. For the two-mode system one has the uncertainty matrix [6] I(®2, |z,rp >) defined by
I(92,]z,r¢ >) = (Ax)*(Ap)* =

( (8z,)? (Axl)(sz)) ( Gpy - (ap)on) (140
(Az1)(Az2) (Bz)? (Apm)(8p2) (Ap2)?
Minimum uncertainty states (MUS) are defined as those for which (%2, [¢p >) = 12x2/4. In
the present case we have that
I(®s,]2,rp >) =471 (14 sinh? 2rsin® @) 1ax2-

We have the qualitative situation already discussed for the monomodal case: minima of S(®2)
and I(®;) coincide wuth either two-mode coherent or with proper squeezed states. Now we shift
our interest to consider the less traditional, finite, non canonical system generated by 3-dimensional
angular momentum algebra.
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3 THE ANGULAR MOMENTUM ALGEBRA, COHE-
RENT AND INTELLIGENT SPIN STATES.

The three-dimensional angular momentum algebra ®; provide a simple example of what one might
think to be a general physical system. Its three generators Ji, 1 € (1,2,3) satisfy the commutation
relations
[J", J_,'] = ‘ié.'ﬂJ[. (15)
In general we will think of a physical system &4 to be a set of observables &4 = {4;,1 € wp }
constituting some algebraic structure (i.e. very often this structure is a Lie algebra). The natural
generalization of the quantum entropy definition initially given [1] for &, (egs. (3)) is

i=p =p

S@alp>) =Y S(Aup>) =-L X |<alyp>Fln|<alp > (16a)

=0 =1 o
where |a; > are the eigenstates with eigenvalues o, of the observable A;,
A;Ia; >= a,-[a; >. (166)

Actually, a physical system @ might be considered represented by different sets of observables
{A:}, {B:}, - - wich can be thought as equivalent quantum atlases which represent .

In terms of field theory one is thinking in the possibility of {B;} being a redefinition of the
initial observables {A;}.

An already interesting, and non trivial example is whether, following this definitions of a phys-
ical system, ®, = {z,p} can also be represented by {N = ala, $}, the number and a convenient
phase operator [7]. Of course, one expects that the quantum entropy of a physical system ¢ must
be independent of its quantum representation, S(®4, ¥ >) = S(®5, ¥ >). We will not dwell on
this interesting point in this article. Entropic calculations will be compared with uncertainties,
which do not have a clearly cut, inambiguous definition, as we will comment below.

One of our main motivations of the present calculations is to better understand which are, for
each specific given physical system, the states |3 > minimizing its quantum entropy, i.e. those
states satisfying '

ﬂ;’—>5(¢, ¥ >)+ A >=0, <yl >=1 (17a - b)

Instead of directly solving this problem, which we cannot do now, we study the behaviour
of S(®, | >) for subfamilies [ > having a relevant physical origin, related to or stemming in
uncertainty relations. '

It is worth recalling what is the general situation concerning uncertainties functionals (8].
Given two physical observables A;, A, Schwarz’s inequality tell us that, for physical states | >:
<yYlp >=1,

I(Ay, A, [¥ >) =

(AAD)(AAD) 2 471 < (A, Ag] > P = C([A1, Ad), ¥ >). (18)

MUS (minimum uncertainty states) are those for which 7 has a local minimum and IS (intel-
legent states) are states that satisfy the equality in eq. (18). The role of physical theories is to
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provide the value of commutator [A;, A;]. In principle one may find |ppus ># IS, |¢; #MUS
and |[¢muss >. It seems that IS constitute a very large set, being the states corresponding to
intersection of two functionals.
®, has two properties: i. is finite, i.e. it has 1rreduc1ble unitary representations which are finite
(due to compactness of SO(3)) and ii. is non canonical, i.e. there are not additional observables
: [Ji, Kj] = i6;; - ®; is one the simplest physical systems where there are IS which are not
M U S [8]. The two kind of states that will be considered here are the coherent (CSS) [9] and the
intelligent spin states (ISS) [8].
CSS are given by

ICSS>=lr>=R(r)|-j>=(1+rr) eI |~-5> (19a)
R(r)=exp{rJ, }exp{In(l + 77*)Ja} exp{—7"J_}
= exp{—10J,},7 = (sin ¢, —cosyp,0) (19%)
where ' p - *
‘r=e"“’tan(—) 0<0<7r, 0 <y <2n. (19¢)

ISS |w; (1) > have been defined as those for which I(Jy, Ja, jw(r) >) = C(Js, |w(7) >). They
turn out to be

wjn(r) >= a,.Yla;'{y”e""’*l -7j>}, 0sn<?j (20a)
where
an = {Z)Y\ 0} [yz + 7 (y — 2)(z - 2)]2"}‘§, (200)
YiF(y,2) = F(1,2),7, = 7(1 — 2/y),7* = 7™ (20¢ — d)
In particular |w,o(7) >= | -7 > and Iw,g,(‘r) >=|r > are CSS. We denote |m >; the

respective eigenstates of J;, .
Jilm >i= mim >; (21)
We first calculate S(®,, |r >). Accordmg to eqs. (16)

=3 m=j
S(@®snlr>)==3 Y li<m|r>Plal <m|r> 2 (22a)

i=1l m=-j
It is immediate to obtain the values of ; <m|‘ri> and its associated probabilities
ha<mlr> = '
{21+ 77} Ya(j, m)|1,i 4 P10 — U™, (220)
b <mir > [F = {(1 +777)} Y a(j,m)|r[f0*™, (22¢)
a(jym) = 251(j + m)!/(j — m)!.

No closed expression has been obtained for eq. (22a). The same happens with the entropy for
ISS. Its value is

=3 m=jJ

S(®4, lwa(r) >) = =3 Y fi<mwa(r) > Plaf < mjwa(r) > |? (23)

i=lm=—j
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where

p=j-m

< wa(7)Im >1.2= analj,m)} 2 2L =G+ m 4 )R —m = p)Y)
f(l ~i)9(q!(j + m + p — g)l)Fritmir=apitmir=q (24a)
q=0
| < wa(r)Im >3 [ = apa(j, m)b|rPU+™)(pitm)2, (24b)
T= tan(g)e"'“"z, neZ, pt= Yla;‘{y’j"‘(y —2)%}. (24¢)

Fig. 1 shows the structure of S(®;,|r >) in terms of the 6§, parametrization eq. (19¢c). S
has local minimums at ¢ = nxr /2, § = n/2. Details of the § dependence for ¢ = nx/2 appear in
fig. 2,3. It can be also observed that the minimum values of S increase with j.

Then we present in fig. 4 $(®|w;(7) >) for the first proper ISS |w, 1(7) > (Jw; o(7) > and
fwy 2(7) > are CSS), and just to have a better feeling of it behaviour we show, in fig. 5, the shape
of S(®s, |wjn(r) >) for j =2, n = 1,3, proper non coherent intelligent spin states.

Then, fig. 6 shows that the minimum for S occur for the central ISS, i.e. in case of j = 2
for |wy3(7) >. In general it will occur for n = (j,j + /2) according to whether j is integer or
half-integer.

What can be said about the uncertainties?

In spite of arguments given [10] in favor of AJ = (AJ?)!/? as the right quantity one should
take to define the uncertainty of ®,; (AJ is a clear rotational invariant quantity), we will take
partial and full quadratic uncertainties I(J;, J3, |¢ >),

I((I)J’ I'/) >) = I(JI)JZ)’ Id’ >) + I(JS)J&I"I’ >) + I(J37le !'/) >)

as the physical relevant quantities which provide an additional insight concerning informational
behaviour of §;.

It seems to us that quadratic uncertainties are the typical elements of a quantum mechanically
based definition.

As it is shown in figs. 7,8 there is a sharp qualitative difference in the behaviour of I(®,, [¢ >)
and I(J1,J2,|¢ >). While I(J;, )2, |wa(7) > presents a local minimum at § = =/2 (|r] = 1);
I(®,|w;.(r >) has a local maximum at this same point.

Since §(®,, |w;n(T >) exhibits a local minimum at # = x/2 and the full uncertainty shows a
maximum, one cannot qualitatively relate anymore these two quantities through S 2 In . these
property is exhibit in fig. 7 where it is shown the anomalus behaviour of I(®, |w; () >). Partial
uncertainty for I(J,,J;, jw;.(7) >) is shown in fig. 8. Its behaviour is completely different of the
full uncertainty. Partial uncertainty minima coincide with entropy minimums.

4 CONCLUSIONS

We have estimated the values of the quantum entropy (not to be confused with the statistical
quantum entropy due to the statistical mixture of quantum states) for monomode squeezed and
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two mode squeezed states. Calculations were extended to the angular momentum system 9,
where the states we used to probe S(®;) came from the natural generalization of the standard
coherent states or by imposing intelligence, i.e. states which satisfy the now operatorial Heisenberg
equality.

In this case, the proper central IS were shown to be the best ones, i.e. they minimize 5(®,).
We systematically compared the behaviour of S(¢;) with that of [ (®,) just to understand why
one must abandon the use of these latter quantities in favor of S(®,). We observed the presence
of anomalous behaviour in I($,;) when one considers ISS, giving additional support to the choice
of $(®,) as the right physical quantity one has to consider for every physical system.
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Abstract

A review on the current efforts to approach and to surpass the fundamental limit in
the sensitivity of the Weber type gravitational wave antennae is reported. Applications of
quantum non-demolition techniques to the concrete example of an antenna resonant with
the transducer are discussed in detail. Analogies and differences from the framework of the
squeezed states in quantum optics are finally discussed.

1 Introduction

The importance of detecting gravitational waves, as frequently pointed out, consists not only
in verifying one of the most direct and astonishing predictions of the simplest metric theory of
gravitation, i.e. General Relativity, but also in the possibility to open new windows on phenomena
in the Universe in which only violent releases of gravitational energy occur [1]. Gravitational waves
have not yet been directly measured because of the extreme smallness of the power emitted even
by astronomical systems. The hypothetical sources which are strong candidates for emitting
gravitational waves, according to our understanding of them actually only due to informations
collected via the electromagnetic astronomy, are divided into two classes based upon the time
evolution. Impulsive sources can be catastrofic events such as supernovae explosions and collapsing
binary systems. The frequency spectrum of gravitational waves of this kind is flat up to 10% Hz,
these impulsive phenomena having a characteristic duration of the order of milliseconds. One
expects a perturbation of the metric tensor A ~ 10-2! — 107'® for events in our Galaxy and
h = 10723 — 10~?! for events in the Virgo Cluster. Periodic sources can be pulsars if they deviate
substantially from axial symmetry. The expected frequencies range is in this case between 10~2 and
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10? Hz, while h = 10727 — 10-25, The efforts to detect gravitational waves have been concentrated
from the very beginning on the impulsive events because of the larger expected perturbation to
the metric tensor. It turns out that the modulation of the space-time induced by a gravitational
wave on an extended body can also be seen as a production of a force field in it. Detecting
the gravitational wave is therefore translated into the problem of detecting this small force of
geometrical nature and the displacements produced by it in a test mass. The displacement induced
in a body of reasonable sizes, =~ 1 m, has therefore an amplitude of the order of 1021 if the event
is due to the a supernovae event in the Virgo Cluster. The accuracy required to measure such a
small displacement is so high that the quantum nature of the detector has to be taken into account
because the De Broglie wavelenght of a macroscopic test mass is of the same order of magnitude of
the expected signal due to the gravitational waves. Here we report on the status of the art of the
measurement techniques developed to allow monitoring of a class of gravitational wave detectors
in a quantum regime. After a brief introduction for schematizing the detectors of gravitational
waves and the sensitivity limit due to the fundamental noise in part 2, we introduce, in part 3, the
quantum non-demolition measurement schemes for overcoming these limitations. The applications
of stroboscopic and continuous quantum non-demolition schemes for a gravitational bar antenna
resonant with the transducer are described respectively in part 4 and part 5. Conclusions deal also
with the analogies and the differences from the quantum optics framework and the importance of
this topic for understanding quantum mechanics applied to single macroscopic degrees of freedom
repeatedly monitored.

2 Weber gravitational antennae:fundamental sensitivity
limits

The gravitational wave detectors devised so far are based upon monitoring of the distance between

two masses localized at different points. The equivalence principle requires a non-local, extended,

structure of a gravitational wave detector because it is possible to nullify locally the effects of a

gravitational field by means of a suitable choice of the reference frame.

Let us consider two masses in free fall: what is then measured is their variable distance which is
supposed to be much smaller than the gravitational wavelength. The effect of a gravitational wave
coming along z axis with proper polarization is to increase of h/2 the distance along y axis and
to decrease by h/2 the distance along z axis. A classification of the gravitational wave detectors
divides these into non resonant and resonant detectors if the two masses are respectively free or
elastically coupled.

In non resonant detectors the distance between the two masses is measured by means of
interferometric devices. The arms of the interferometer proposed so far are of the order of Km and
use of multiple reflections allows to increase the physical paths by several orders of magnitude.
In this contribution we will not be concerned with this kind of detectors but we shall instead
consider the resonant detectors (Weber type gravitational wave antennae), the quantum limit in a
interferometric antenna being enforced by the shot noise and the momentum fluctuations imparted
by the photon flux to the central mirrow of the interferometer [2].

Resonant antennae are tipically cylindrical bars of materials having low internal dissipations.
The materials used are silicon, sapphire, niobium or a particular aluminum alloy (Al 5056) and
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the mass of the antennae is of few tons.

One can show that the motion of the ends of a cylindrical bar of mass M and length L
oscillating in its fundamental longitudinal mode is equivalent to that of a harmonic oscillator of
mass M/2 and equivalent length 4 L/#?. If z is the displacement from equilibrium position the
equation of motion of the Weber oscillator is

.z 2 2
z:+_ro+woz_ﬂ_2Lh(t) (1)

where 7o is the damping time, wp is the proper frequency and h(t) is the amplitude of the incoming
gravitational wave. The forcing term due to the gravitational field is proportional to the distance
between the two masses. From this formula one can calculate the cross section for the transfer
of energy from the wave to the antenna and one finds that this is proportional to the mass of
the antenna and to L?. The proper frequency wp is chosen to be tuned with the frequency of the
expected wave (10°Hz) and the corresponding wavelenght is very large compared to the size of the
antenna. To amplify the extremely small oscillations coupling of the bar with another oscillator
of very small mass is used [3],(4]. In this case a system of two coupled harmonic oscillators is
obtained in which the energy is continuosly transferred back and forth from M to m via beating.
If the dissipations in the two oscillators are made negligible the amplitude of the oscillations in
the second resonator is increased by a factor 1/ VB Wwith respect to the first resonator, where
# = m/M, provided that the frequencies of the two uncoupled oscillators are made coincident.
The motion of the transducer is transformed into an electric signal by means of a variable capacity
and an amplifier schematizable as an ideal amplifier of gain A and two noise sources generators
with current and voltage spectral densities respectively SI, and SV,. The sources of noise are
the thermal noise, i.e. Brownian motion of antenna, which gives a contribution KT to the energy
of the oscillator, being K the Boltzmann’s constant and T' the thermodynamical temperature
of the antenna and the amplifier noise, which is expressed by means of the parameter 7, =
(SV, SI,)*/Kp, called noise temperature of the amplifier. This last noise has two effects: it
contributes directly as an additive noise source at the output and it acts on the transducer leading
to an increase of the temperature. In other words every transducer is at the same time an actuator
and the amplifier noise gives rise to a back-action force acting on the mechanical oscillator.

If we define a noise temperature T,;; as the temperature which corresponds to the minimum
detectable energy E.;y = K T.4; transferred to the bar by an impulsive signal with an output
signal/noise ratio equal to 1, we find, using a Wiener algorithm in the data analysis [5]

T¢!f=2T,,\J (1'+’\—lg) (l+%) (2)

where Q = wy7o is the quality factor of the mechanical system, 8 is substantially the fraction of
energy transferred to the electromagnetic circuit by the bar throug the capacitive coupling and
Ao the impedance matching factor defined as

SV, 1
A ®)

For the antenna of the Rome group continously operating since one year at CERN one has a
thermodynamical temperature of = 4.2K; the other parameters are Q ~ 5-10% and an amplifier

Ao
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noise temperature T, ~ 10-7K [6]. It has been possible to achieve this last result making use of
a SQUID amplifier. So one gets for T.ss a value of ~ 10uK, which is not far from the quantum
limit temperature

hw
ToL = — ~ 1078K.
oL = 107°K 4)

One expects that the force with which a gravitational wave acts on the antenna is by many
orders of magnitude below the thermal noise even at thermodynamical temperatures as low as
10mK which is the temperature at which the third generation antennae will operate. Howewer,
due to the particular features of the data analysis based on the variation of energy in the oscillator
in the time, the quantum regime is reached earlier than as expected by (4). By writing the amount
of energy which is exchanged during the measurement time At between the harmonic oscillator
and the thermal reservoir and the quantized energy introduced by the measuring apparatus is
easy to show that the quantum regime is obtained when the following condition is satisfied

KTAt
Q

This can be also shown by reasoning in terms of displacements instead of energy. The variation
of the length of the bar due to a gravitational wave with amplitude h is, according to (1)

Al h
T3 (6)

Because typical values for h are b = 107?' (which corresponds to a supernova explosion in
the center of the Galaxy) taking L = 1 m, one gets from (5) a variation of the length of the bar
AL ~ 10-'® ¢m which coincides with the standard quantum limit (i.e. the root square mean of
the position of a harmonic oscillator in his fundamental mode)

<h (5)

(BP) = [ (™

It follows therefore that if we do not overcome this limit no information can be obtained on the
evolution of the harmonic oscillator.

In these conditions one can find a method to measure the position of the quantum oscillator
and to see if an external force has acted on it. However in doing this one must take into account
that the position operator #(t) does not commute with itself at different times. Indeed with a
measurement of &(t) at time ¢ one put the oscillator into an eigenstate of (t); if one repeats this
measurement at the instant ¢ + 7 one puts the oscillator into another eigenstate. It turns out
that it is not possible to know if the change in Z(t) is caused by a very weak classical external
force because of the quantum demolition of the state. What is needed is therefore a measurement
which does not prevent the execution of the next measurements of the same observable avoiding
the demolition of the projection of the state on that observable. This is possible in non-relativistic
quantum mechanics as we will discuss in the following considerations, because this theory make
limitations only on a simultaneous, perfect knowledge of two canonical observables.
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3 Quantum non demolition measurements

The introduction of the quantum non-demolition measurements (QND) dates back to an article
by Landau and Peierls [7] in 1931. However only recently, after understanding the role of quantum
mechanics in the fundamental limits to the amplifier sensitivity [8],[9] and under the request to
surpass the quantum limit in detectors of small displacements [10},{11], the problem has been
studied in detail [12],(13]. The idea of a QND strategy is to perform a series of measurements
of one observable of a single object in such a way that the act of the measurement itself does
not affect the predictability of the result of the next measurements of the same observable. In
order to do this the observable, the instants of time in which it is observed and the interaction
Hamiltonian should be all carefully chosen for a given dynamical system. For instance, a first high
precision measurement of the position of a free particle implies a large dispersion in the possible
values of measurements of momentum. If a second measurement of position is made, due to the
Heisenberg evolution, the result will have a large dispersion too. Instead, if a measurement of
momentum in a free particle is made at a given instant of time, a second possible measurement
will give the same result due to the constant value of the momentum between the two consecutive
measurement, provided that the interaction due to the first measurement has not demolished the
state. This simple example shows the route to define quantum non-demolition measurements.
Ounly particular observables which satisfy a commutation relation at different times t; and ¢; are
allowed to be monitored in a QND way, i.e. if

[£(t:), 2(¢5)] = 0. (8)

Moreover, we must also take into account the perturbation on Z(t) induced by the measuring

apparatus which is coupled to the observed system by means of the operator Hamiltonian H,.

To avoid changes in the expected value of the observable during the measurement the following
condition must be satisfied:

[é(t)’ E;] =0. (9)

This condition assures that the interaction Hamiltonian is simultaneously diagonalizable with the
measured observable, no changes are induced in the measured observable during the measurement
time in which only the interaction Hamiltonian will be responsible for the time evolution. A
sequence of measurements performed under conditions (8) and (9) will give always the same result.
This is a definition of a QND measurement. If the instants of time in which it is satisfied (8) are
discrete the QND scheme is named stroboscopic or, in a realistic configuration with a duration of
the measurement small with respect to the characteristic timescale of the motion of the observed
system, quasi-stroboscopic [14],[15],(16]. Otherwise, having a continuous set of instants of time,
the QND scheme is named continuous.

In the case of a single oscillator one introduces the two components of the complex amplitude

X, = Rel(z + i%)e"“"]
(10)
X, = Iml(é + i)

—_—

such that Z(t) = X, cos wt + X, sin wt. Their properties are
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@ Lo mORE=®mOTe—0
6 RO (12)
By using (e) and (b) we get

[£(t), 2(t + 7)) = —[X1, X;] {cos wt sin w(t + 7) —sin wt cos w(t + 1)} = % sin wr.  (13)

This means that to do a QND measurement of the Vépera.torr #(t) in a single harmonic oscillator
one needs the Hamiltonian (here § is the variable of the measuring apparatus which couples with
the oscillator)

H; = E, 5t — %)eq (14)

such that the interaction between the system and the measuring apparatus is turn on only when
#(t) commutes with itself, that is why this kinds of measurements are called stroboscopic Q.N.D..

For a component of the complex amplitude, X;, a QND interaction Hamiltonian should be
(12]

H; = EoX\§ (15)
that is approximately obtained by using the ihiéractioq Hamiltonian
H; = 2E,coswnt & § (16)

provided a low-pass filter at w. << w,, is used. For practical reasons a different pumping is used,
namely a up-conversion around an electrical frequency w, such that the interaction Hamiltonian
is now

H; = Eo cosw,t cos wpt £§= %[cos(m¢ + wm )t + cos(w, — wm)t]rz':é (17)

which allows an approximate measurement of X; if a filtering around w, is performed with a
selectivity such that the terms oscillating at w, + 2w, are ‘made negligible. It has been pointed
out that the continous approximate QND measurement scheme of one component of the complex
amplitude is obtained as a first order approximation of the corresponding stroboscopic scheme
[17]. If we start from the interaction Hamiltonian of a stroboscopic measurement of X, expressed

in terms of the physical observable z

I?,— = Eycos w,tZJ(t - g)jﬂcj = E,cos w,tZ(—l)"J(t - H)zq (18)
n 1 n wl
we will see that, by Fourier expanding the Dirac-distribution, it is obtained
H, = E,cos w¢t2c05(2n + Dwitz ¢ (19)
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that, at the first order, is

H: = Egcosw, t cos witz § (20)

i.e. the usual approximate scheme for monitoring of X;. Thus knowing a QND stroboscopic
strategy it is simple to write the corresponding QND approximate continuous strategy. This
property will be particularly useful in the following considerations, where the more complicated
but realistic case of two coupled harmonic oscillators will be treated.

It has been pointed out that also in the classical regime, i.e. when the amplifier is not quantum
limited, the QND measurement schemes provide a better sensitivity because one phase of the signal
is shielded by the back-action force of the amplifier. A quantitative model in the classical limit
has been developed in [18]: it turns out that by writing the noise temperature as

o 1
Ty = <m7,~ (21)

e T
for a standard 'amplitude and phase’ monitoring is » < 1, and for a QND/BAE scheme r may
be greater than unity. This is due to the squeezing of the electrical noise into one mechanical
phase. A generalized uncertainty relation for the two classical conjugate observables due to the
back-action of the amplifier noise is introduced as

T,
2muwpyw,

which may be obtained through a replacement on the right hand side in the standard quantum
uncertainty relationship

k

MWy,

of h with KgT,/w,. If a squeezing factor p such that AX; = pAX, is introduced (p — 0 means
a noise-free measurement of X;) the minimum burst noise temperature can be written as

mwiAX? 1w
Ty=—>2""1~_T — 2
d 2 4T Wwa (4)

showing that the r figure of merit has a dynamical interpretation in terms of a squeezing factor.
Recently, an interpretation of the back-action evasion strategies in which they are seen as an
alternative to the usual impedance matching for maximizing the signal to noise ratio has been
discussed [19].

The description of the QND measurement suggests how to measure small forces below the
standard quantum limit. By means of a simple integration of the Heisenberg equation in presence
of an external force F(t), one gets for the QND operator X;

F(t) sin wt' dt’, (25)

mw

Ti(t) = Kilto) -i[

A sequence of measurement of X; will then give as a result a sequence of eigenstates linked to the
value of the external force

215



£(t, ) = E(to) — '/tt Fit) sin wt', dt’. (26)

o MW
By means of successive measurements it is possible to study the form of F(t) simply inverting (26)

mw d
sin wtaa(to’t)

The singularities for ¢ = nw/w corresponds to a null information on the force acting on the
harmonic oscillator on some instants of time. This can be compensated by using a second oscillator
(i.e. a second antenna) with complex amplitude Y; + i¥; which has eigenvalues

tF(t)

to MWW

F(r)=-

(27)

t=7

sin wt', dt’ (28)

C(tvf) = C(tO) -

here obviously the singularities are in t, = (2n + 1)7/2w.

4 QND quasi-stroboscopic scheme for coupled harmonic
oscillators

The current generation of gravitational wave antenna of the Weber type operates by means of
an antenna coupled to a small mechanical resonator. In such a way the energy deposited in the
antenna by a gravitational wave burst is transferred to the transducer. In the case of an ideal
transfer of energy, i.e. with both a perfect tuning of the two uncoupled frequencies and negligible
dissipations during the beating period, the amplitude of the oscillations in the transducer is larger
than that in the antenna by a factor equal to the square root of the ratio of the equivalent masses
of the two resonators. All the detectors operating in coincidence as described in (6] were equipped
with a resonant transducer and the same is also planned for the third generation of gravitational
wave antennas cooled at 50 mK now under development. It is therefore important to generalize
the previous considerations on the QND schemes to this situation, as already outlined in [20]. As
we have seen, it is possible to schematize the gravitational cryogenic antenna and the resonant
transducer with two coupled harmonic oscillator having masses respectively m, and m, (with

p= % & 1). The two coupled mechanicals oscillators are described by the Lagrangian

L= bt + byt = b =y 27 = 307 (§) -5 v ) @

where the normalized coordinates § = \/m,z and 7 = ,/m,y have been introduced, together with

the matrices T and V
1 0
T= (0 1) (30)

2 1,2 2
V=(“’=+"“’v 'ﬁ“’v). 31
—VBw, W 31)
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As we have already cited to obtain the maximum coupling the two oscillators should have the
same frequency w. = w, = w, i.e. they should be tuned. In this case one finds the solutions

wi2=w02(1+’—2‘i‘/;¢(1+%)) (32)

which we can write more easily introducing a; = 42‘ = (1 + %) obtaining w2 = w2(1 + ay).

The normal coordinates =; corresponding to the eigenfrequencies w are linked to the physical
coordinates by means of an orthogonal matrix

>

(5)- é_ f Jf (V). -

Let us introduce the complex amplitudes of the normal modes

Y+ _ ’:'.‘ PE .
X{ = Eicoswyt — Ti*- sin wyt

. (34)
X, = _.* sinwyt + £ P coswyt
which satisfy the relations
ik = < ih
[XT,X+]—— (Xr,X7]=— (35)
Wy w_
as well as
[X12(8), Xa(t + 7)) = [Xi(8), Xia(t + 7)) = 0. (36)
We can also rewrite the Hamiltonian H of the system as
o “’-’n— T+\2 TH\2 wloo oy T-\2
H =X + (X Y]+ (X0 + (X)) (37)

The commutator [y(tl— zL),y(t + 7) — &(t + )] is calculated by writing § and Z in terms of the
complex amplitudes Xj;, Xi5; of the normal modes which are integral of the motion and by using
the same computation procedure which led us to formula (13). Using (35),(36) we obtain, finally,
the expression

[9(6) = #(2),5(¢ + 7) — (¢ 4 7)) = Jm YL i w,r + :—251n w_r (38)

This quantity becomes, in the limit g — 0

5(0) = (e) 6+ ) = (e + 7)) = 22 EE

sin T coswpT (39)
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where @ = “3¥= = ¢ /[y T4 — w and wp = “43%= = §./p. The (38) and (39) show that
the commutator of the operator § — # with itself at different times is time dependent and it
has a characteristic beating behaviour. We have seen that in a quasi-stroboscopic scheme for
a single harmonic oscillator the commutator is zero each half a period of the motion and the
stroboscopicity is defined whenever measurements with a duration small compared to the period
of the motion are performed. This implies a measurement time, a duty cycle, very small and a
consequent small value of the effective electromechanical quality factor. In the case of a double
harmonic oscillator this drawback is less pronounced because the commutativity is assured every
half of a beating period for a time of the order of a period of oscillation. Thus quasi-stroboscopic
QND schemes already proposed as a generalization of the conventional BAE scheme based upon
a continuous monitoring [17) and already tested on a single oscillator system [21] can be adapted
to this situation. In the case of a single harmonic oscillator the duration of the measurement must
be small compared to the period of the harmonic oscillator T, in the case of two coupled harmonic
oscillators this duration is of the order of some periods of the uncoupled oscillator, although the
interaction must be turned on every quarter of a beating period. The interaction Hamiltonian for
a two coupled harmonic oscillator system is therefore

7= 2o yioe - 222 + BTy (-t + 22+ S0IG - 2 (40)
where Tg is the beat period and AT is of the order of the period of a single harmonic osdillator.
Practical values are Tg ~ 40ms andAT ~ 2ms. To calculate the error in a quasi stroboscopic

measurement of the operator § — £ performed for instance in the interval 7::_5 - 2—-‘3, W‘K‘; + %-T— we

identify the conjugate observable of §— £ as the quantity (#, — p-)/2. This last can be expressed in
terms of the components of the amplitudes of the normal modes and the commutator at different
times of the two conjugate observables is obtained as
. . 1,. . ih
[5(¢+ ) — (¢ + 7). 3 (5(8) = ()] = 5

a_—1 a, —

mcos W+T+ mcos w_-r). (41)

When 7 = 0 the commutator relationship (41) is written as

[5(¢) — 2(8), 5 (Au() = Bu(0)] = iB (42)

which is exactly the quantity [£(¢), 15-(t)] + [§(t), 354(¢)]-
By expressing w, and w_ in terms of the frequencies @ and wp and substituting in ay their
expressions in terms of u we get finally

1+p
pp +4)

If the measurement is performed in the interval ['2"%; - %":, 25_3 + %—"], we can approximate

[Gt+7)—2(t+7), %(ﬁ,(t) —-p:(8))] = ih(c'os @T COS wpT — sin @7sin wpT) (43)

coswpr ~ 1 and sin wpT ~ wpT — § and a measurement of infinitesimal duration ¢’ performed
in such interval and with a precision A[§(t) — ()] allows to evaluate the error introduced in the
measurement process on the uncertainty product as
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BI§(E +) = (¢ + )] 3 AB(e) = 5u(t)] = 5] cos Ot - % sin @ (wpt' = 7)|  (44)

from which, under the approximation for the trigonometric functions, we obtain

1 , k

AP (t) — p(t)) 7 —————.
The error due to a measurement of duration ¢’ on the operator § — & is calculated starting from
Afy(t) — z(t)] because

(45)

7 N-¢& N =~ A[y(t) — £ cosu‘;'—————1+ﬂ sin @t'(wpt’ — =
Alg(t + ') — (¢ + ¢')] = Afg(t) - 2(2)]] t m t'(wpt )l (46)

If the notation now is changed defining A, = A[§(t) — #(t)] we have

1+p

A,‘[cos wt' - ———Lsin @t'|wpt’ — gl]
t yvilp +4)

and in the limit of t' — 0 we get

(47)

dAg_ 1+ﬂ T

dt Vele + 92 & e

from which, by integrating, we obtain the error on a measurement performed around ¢t = 2:—3 as

Tptl) o

Alg(t +7) - 2(t + 7)) = Alj(t) — #(t)] exp] J- (49)
2y/p(p+4)
For instance, for a choice t = [23—8 - %75] and 7 = %—” we obtain
oo 2r. . ® 2r Lo T 2. w27 2r3(p + 1)
A[y(m t2)- Hoor TN~ A[y(m =) Noor ~ 3 explm] (50)

A drawback of these measurement scheme appears when # is very small and the frequency of the
measurement is consequently very small too. To overcome this problem a multimode configuration
can be used. In this case the commutator at different times more frequently approaches zero when
compared to a two-mode configuration of the same final mass ratio. A more detailed description
of this point can be found in [22].

5 QND continuous schemes for coupled harmonic oscil-
lators

Also QND continuous schemes can be used for coupled harmonic oscillator. A first example is

given by a monitoring of the complex amplitude of the physical modes  and j [23). Introducing
the complex amplitudes such that
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{ § = Re[(Yy +i¥s)e ]
(51)

ﬁv/mv‘”v = Img[(?l + ii}z)e_iw’t]

we can rewrite the Hamiltonian in terms of ¥, and ¥, and, by writing the Heisenberg equations
for the time evolution of Y;, we obtain

— = —w,sin wyl. (52)

The complex amplitude is not a constant of the motion. However it is easily proved that itis a
QND observable. A relationship valid for an infinitesimal time 7 is derived for the time evolution

Yit+7) = Yi(t) — wysin wytr (53)

and this implies the commutation rule for Y, at different times

[Tt + ), Ta()] = [Fa () — wy 2sin w2, Y] = 0 (54)
because of the commutativity between Y, and 2. Thus Y: (or Y3, for which similar relationships
hold) is a QND observable, although it is not conserved during the motion. From (52) the
coordinate % is inferred as '

1 4%

)= ———m— —
£(t) wy sinw,t dt

(55)
apart from the singularities already discussed appearing when sin w,t = 0. When a classical force
F(t) acts on the system the Hamiltonian operator is modified and the added term is

Hy = —(2+3) F(t) (56)

obtaining, in this case, the following expression for the time evolution of ;

dY, A sin wyt

— = —w,Zsin wyt —

dt mywy

However the effect of the external force to be detected, in our case of geometrical nature, on
the transducer is nigligible compared to the effect on the antenna, due to the smaller size of the
transducer. Thus H; ~ —&F(t) and the second term in (57) can be omitted. In this reasonable
approximation, i.e. F(t)acting only on the antenna, Y, is also QNDF, i.e. QND also in presence of
an external force. To obtain a continuous monitoring of Y; we need a QND interaction Hamiltonian

of the type

F(t). (57)

H, = Eocos wetcos wyt(§—2)§ (58)

that is a coherent superposition of pumpings at frequencies w, + w,. Analogous considerations
can be made for the monitoring of the real or the imaginary part of the complex amplitude of
one normal mode expressed in terms of the physical modes through (33). The advantage in this

. P . . oy e .
case is that the quantity X; is a constant of the motion and its monitoring is the standard one
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already discussed for a single harmonic oscillator. This is obtained by means of the interaction
Hamiltonian

H; = Eycos w, tcos wy t(§ — £)§ (59)

and the analogous for monitoring a component of the complex amplitude X by substituting w,
with w_. One drawback of monitoring one component of the complex amplitude of the normal
modes is that the information on the other mode is lost, and it is crucial to have informations on
both the modes to take full advantage of the resonant schemes.

An alternative scheme suggested by the time dependence of the commutator consists in a
monitoring corresponding to the following Hamiltonian:

H; = Eqcos w, tcos @tcos wp t (i — £)4. (60)

This coupling allows to infer informations on both the modes because, upon filtering around w, in
such a way to neglect terms oscillating at w, + 2wp, we + 2@, w, + 2(@ + wp), it can be rewritten
as

—~ E - .
H; = To cos w t(A+ Xt + B-XT)§ (61)
where (3 are coefficients related to the coefficients of the matrix (33) and are expressed as

(1+E) 1
\/— —”3/2)

which, in the limit of 4 — 0, goes to 8; = F1/y/2m_g. In this limit the interaction Hamiltonian
assumes a simple form

ﬂi—[m,(2+ Fye1+£ D) 1/’( (62)

- E s el
H; = T:Tpcos wet( Xt — X7 )g (63)

which contains informations on both the normal modes and in such a way that QND measure-
ments can be performed on both the modes. In all the three cases here discussed the selectivity
requirements on the electrical circuit are more stringent than in the case of a single harmonic os-
cillator, because now the electrical oscillator must have a quality factor Q. >> w,/wp in order to
avoid detection of sidebands contributions. The interaction Hamiltonian (60) can also be written
as

-~ E ay s
H; = 30- cos w, t(cos wy t + cos w_t)(y — £)4. (64)
With the analogy to the multipump scheme discussed for a single oscillator we can imagine a

interaction Hamiltonian of which (64) is only the first order approximation

. +00 +o0
H; ~ % cos wet[Y cos(2n + Nwy t + Y cos (2m + 1)w_ t)(§ — £)§ (65)

n=0 m=0

which corresponds, in the limit of a stroboscopic pumping of the kind

o= Eo(3(- 18t - =) + (- 1)"8(t - = ))(3 - £)d (66)

n=0 m=0
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It is interesting to observe that after a time equal to Tp/2 both the trains of Dirac distributions
will coincide, i.e. Tg/2 = nw/w,; = mw/w_ where n = m + 2 (the fact that n and m have the
same parity assures the same sign of the corresponding Dirac pulses at those times). So each half
a period the two trains are summed and the quasi-stroboscopic scheme discussed in the previous
section can be considered as the first order approximation of the stroboscopic scheme resulting
from (66). This completes the connection between the multipump continuous schemes and the
quasi-stroboscopic scheme introduced in the previous section.

6 Conclusions

We have shown the scenario under which quantum non-demolition measurement schemes should
be demanded for detecting gravitational waves in the generation of resonant gravitational wave
antennae currently under development, particularly ultra-low temperature resonant bar antennae
such as the Rome, Legnaro and Stanford ones which will work at a thermodynamical temperature
of ~ 50 mK. Both QND stroboscopic and continuous schemes have been discussed as well as their
link and practical schemes to implement them. However the interest of quantum non-demolition
measurement schemes goes beyond the only detectability of the gravitational radiation, involving
also the quantum measurement theory and the predictions of it for repeated measurements on
a single macroscopic oscillator. Feasibility of the generation of macroscopically distinguishable
states using a QND scheme has been recently discussed in quantum optics [24], [25]. It has been
pointed out that the generation of Schroedinger cats using micromechanical oscillators with quan-
tum limited sensitivity is also feasible [26]. Unlike the optical case, in which the QND measurement
is obtained with a frequency mixing due to non-linear susceptivity, the QND measurement for the
mechanical case is obtained using an electric field which can be large as one wants. Dissipations
in a mechanical oscillator also are quite low compared to electrical or optical oscillators. More-
over, analogies to the production and the detection of squeezed states in optics [27] have been
shown. We want to point out a fundamental difference between the two topics: in the case of the
optical squeezed states we deal with a quantized field in which its quantum nature is responsible
for the limitation to the semsitivity, in the case of quantum non-demolition measurements on a
harmonic oscillator the eventual force field which has to be monitored is considered classical and
the fundamental limitations comes from the process of the measurement and the interaction of
the meter with the external environment. What is squeezed in a QND measure is the back-action
noise generated by the amplifier and the squeezing is made in a phase orthogonal to the one which
is detected [21]. Despite of this conceptual difference the formalisms to deal with QND strategies
are similar to the one used to deal with squeezed states. This analogy is so narrow that also multi-
pump [28], [29] and quasi-stroboscopic [30], [31] schemes have been indipendently and successfully
implemented for squeezing the light. Further thoughts on the analogies and the differences be-
tween quantum non-demolition measurements on a harmonic oscillator and the squeezing of the
quantum noise can give rise to a better understanding on the same interpretation of Quantum
Electrodynamics and the operative origin of the vacuum fluctuations of the field in terms of a
measurement process [32], an aspect of this fascinating and successful theory which has been very
little investigated until now.
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Abstract

It is discussed that the metric induced on the quantum evolution
submanifold of the projective Hilbert space describes the uncertainties
and correlations of the operators generating the quantum-state evolu-
tion, and exhibits the inherently-quantized geometry.

¥

1 Introduction

Berry’s phase and its extensions [1-6] are the striking phenomena that show
how the law of quantum-state evolution is geometric. It is determined by
the evolution curve in the projective Hilbert space P, and is independent of
a specific choice of the Hamiltonian as long as it gives that projected curve
in P.

The phase difference due to the 1-parameter (1)) evolution is seen in the
first-order term of dA in the transition amplitude (¥(A)]¢(A + dA)). On
the other hand, geometry of the evolution curve C in P is characterized by
the Fubini-Study metric [7,8] induced on C: ds? = 1 — [((A)|9(A + dA)))2.
(Here and hereafter, the state vectors are assumed to be normalized.)

Recently, Anandan and Aharonov [9,10] have obtained a remarkable re-
sult that if the 1-parameter evolution is generated by a Hermitian ope-
rator A, then the relation ds = AAd) holds, where AA is the variance
(AA)? = (y|A%¢) — (¥|A|¥)?. This means that the “velocity” of evolution
along C is just equal to the uncertainty of the generator of that evolution.
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The purpose of this paper is to report briefly the further results recently
obtained in the study of geometric aspects of quantum evolution. More
detailed discussions will be found in Ref. [11].

2 Geometry of Uncertainty and Correlation

There are a variety of 1-parameter evolutions for a generic quantum state.
Fach evolution gives each curve in the projective Hilbert space P. It is
preferable to consider the multi-dimensional submanifold A of P, in which
various evolution curves are embedded. N is properly called here the quan-
tum evolution submanifold. If a given state is parametrized by a set of n
real numbers a = (a!,a?,...,a"), then a local coordinate of A is identified
with a. In this case, the metric induced on A is given by

ds? = 1 - |($(a)l(a + da))|*. (1)

If the evolution of the state |¢(a)) is assumed to be generated by n inde-
pendent Hermitian operators {Ai(a)}i=1,3,...n, that is,

- ia-‘l'b(a)) = Ai(“)W’(“)) (=12,..., n), (2)

then Eq.(1) has the form ds? = g;j(a)da‘da’, where

0i5(0) = 3(H(@)lAa)A;(a) + Aj(@)Ai(a)|¥(e))
~ (¥l i)l (@) (¥(a)l4(@)l¥(@), 3

provided that 8; = 8/8a‘ and the summation convention is understood for
the repeated upper and lower indices. Thus, one can see that the diago-
nal ¢;; and off-diagonal g;; (i # j) components are respectively equal to
the uncertainties and correlations of the operators generating the evolution
(11,12).

The metric (3) defines the Riemannian structure of A'. The metric-
compatible connection can be expressed as a simple quantum expectation
value [11]:

1 .
kj = 7(¥l(0:B; + 8;B; — i(BiB; + B; B:)] B
+By.[8;B; + 8; B; + i(B:iB; + B;B)]|v), (4)
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where the operators B; are given by Bi(a) = Ai(a) - (¥(a)|Ai(a)|¥(a)).
With this expression, it is straightforward to ascertain the Riemannian par-
allelism: Vigij = Okgij — TPikgnj — T*jrgin = 0.

Geometric aspects of the uncertainties and correlations can be seen best
in the squeezed state example. The single-mode two-photon squeezed state
[13] is given by |2)¢ = D(2)S(£)I0) = exp(za' — 2°a) exp[}(£al? — €*a?)]|0).
a' and a are the usual bosonic creation and annihilation operators. |0) is
the vacuum state annihilated by a. D(z) and §(£) are called Glauber’s
displacement operator and the squeeze operator, respectively. The displa-
cement operator gives a correspondence relation between relevant operators
and their classical counterparts in the phase space (z,p) with the parame-
trization z = (z 4+ ip)/v2. T and p are respectively equal to the expectation
values of the position X = (a + a!)/v/2 and momentum P = (a - at)/iv/2
operators in the squeezed state.

Consider the translational evolution: |2(z,p))e — |(z + dz)(z + dz,p+
dp))¢, where the squeeze parameter is fixed. From the transition amplitude,
the metric ds? = 1- |¢ (z]z + dz)¢|? is directly calculated as

ds? = %(cosh 2r — sinh 2r cos 2¢)dz? + %(cosh 2r + sinh 2r cos 2¢)dp?

1
+2 x Esinh 2rsin 2¢dzdp, (5)
provided the parametrization £ = re=%® (0 < r, 0 < ¢ < 2r) has been
used. This is the Euclidean metric in a non-Cartesian coordinate. On the
other hand, the above translational evolution is generated by the following
operators:

.0

- 'a_zlz)c = Azlz)fv A =-P+ g, (68.)
.0 T

- la—p'Z)e = APIz)C’ Ap =X - E (Gb)

The uncertainties and correlations in the squeezed state are the familiar
ones:

(AA;)? = (AP} = %(cosh 2r — sinh 2r cos 2¢), (7a)
(A4, = (AX)? = -;-(cosh 2r + sinh 2r cos 2¢), (7b)
C(As, Ay) = —~C(X, P) = %sinh 2r sin 24, (7¢)

227



where C(A, B) = C(B,A) = }{(¥|AB + BA|¢) — (¥|A|¥)(¥|B|¥). These
quantities in fact give the components of the metric (5).

The effects of squeezing as the expansion, contraction, and rotation in
the phase space has been explored geometrically by the methods of phase-
space representations of quantum theory in the literature [14,15]. The metric
(5) describes those effects in a peculiar representation-free manner.

Since the metric is given in terms of a reference state, it carries some of
quantum numbers characterizing that state. Accordingly, N possesses the
quantized structure, in general. In what follows, such examples are given.

The first example is the displaced number state [16]: |z)n, = D(z)|n),
where |n) = (n!)~1/3(a")*|0) (n =0,1,2,...). Consider the translational
evolution | 2(z,p))n —| z(z + dz,p + dp))n. The metric is calculated as

ds? = (n + %)(d:’ +dp?). 8)

Therefore, the phase space locally identified with N associated with the evo-
lution of the displaced number state has a Euclidean metric with a quantized
conformal factor.

Another example is the squeezed number state [17): | &) = S(£) |
n) (n=0,1,2,...). The squeeze parameter is again parametrized as { =
re-2%_ Consider the evolution | £(r, #)}n —| (6 +dE)(r + dr, ¢+ dd))n. N
is locally labelled by (r,#). The metric is then found to be

ds? = —;-(n2 +n+ l)(dr2 + sinh? 2rdd>2). (9)

This is the metric of the Lobachevsky space [18] with a quantized conformal
factor. Its Gaussian curvature [18] is also quantized as K = —8/(n?+n+1).
It is interesting to see that the curvature vanishes in the “classical limit”
n — 00.

3 Conclusions

It has been demonstrated that the Fubini-Study metric induced on the quan-
tum evolution submanifold A is completely given by the uncertainties and
correlations of the operators generating various evolutions, and N admits
the quantized Riemannian structure.

In the above simple examples, only the conformal factors of the metrics
are quantized. This may be partially due to the mathematical fact [18]
that all two-dimensional spaces are conformally equivalent to the Euclidean
space. In general, each component of the metric is individually quantized.
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Abstract

Bohmian mechanics is a deterministic theory of point particles in motion. While avoid-
ing all the paradoxes of nonrelativistic quantum mechanics, it yields the quantum formalism
itself—especially the role of self-adjoint operators—as a macroscopic measurement formal-
ism. As an “application” it is shown that much of the confusion connected with the phase
operator for the electromagnetic field arises from a misunderstanding of the role of operators
in quantum theory.

1 Introduction

We would like to apologize for the bad title: we will try to explain why the casual use of the
words “observables” and “measurements,” which are on John Bell’s list of bad words in his article
“Against Measurement”[1], “measurement” being the worst of all, leads to much unnecessary
confusion concerning the meaning of the quantum formalism. But first we introduce an even
worse word: following Bell we will use the abbreviation “FAPP” for “for all practical purposes.”

Quantum mechanics suffers from its irreducible reference to “observers” and “measurements”:
We have, for example, the fundamental rule that |1(g)[*dg is the probability of observing a particle
in dq about ¢ in a position measurement. This rule entails 1) indeterminism, because it deals
with probabilities on a fundamental level; 2) subjectivity, because it refers to an observer and
3) vagueness, because the notion of measurement is vague. It has repeatedly been emphasized,
however, that these are inescapable components of modern physics. The following reasons are
frequently cited:

o It is meaningless to talk about trajectories of particles, because the uncertainty principle
doesn’t allow for a simultaneous measurement of position and velocity (Heisenberg).

A

e It leads to contradictions even to think that a particle might have a well-defined position
and velocity at the same time.

e It is mathematically impossible to add “hidden variables” (e.g., actual positions) as a further
specification of the quantum state (von Neumann [2]).

This is wrong! In fact it is almost trivially wrong: A counterexample has existed for more
than four decades, namely Bohm’s quantum theory [3], which we prefer to call “Bohmian me-
chanics.” By trying the obvious, namely by seeking a motion of particles in space compatible
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with Schrodinger’s equation, one is led directly to Bohmian mechanics. This theory is clear, ob-
jective and deterministic. The entire quantum formalism—operators as observables, randomness,
etc.—emerges as a measurement formalism, or more precisely, as a phenomenological formalism
for describing measurement-like experiments. Thus one arrives at an explanation for the quantum
formalism rather than at an alternative theory which might give rise to “new predictions.” We
will argue, however, that Bohmian mechanics nonetheless refutes most of the approaches to the
problem of the phase operator in quantum optics. It turns out, in fact, that there is no problem!
But let us first give a brief review of nonrelativistic quantum mechanics.

-2 The Quantum Formalism

e State: The state of an N-particle system is given by a vector ¢ € H = L,(R?M).

¢ Dynamics: The time evolution is given by the unitary evolution ¥, := e‘r'»;mz/)o, which is
equivalent to Schrodingers equation ih%d) = Hi.

e Observables: The observables of the system are giVen by self-adjoint operaters on H. To find
operators corresponding to classical observables one replaces the classical Poisson brackets
by the commutator: {, } — %[, |-

o Measurements: In a measurement of an operator A = ¥_ X;]a;)(a;| on a system in the state
1 one may find only one of its eigenvalues );, with probability prob(i) = |{a;|}|®. After the
measurement the system is in the corresponding eigenstate |a;) (collapse rule).

3 The Fundamental Ambiguity

There can be no doubt that the predictions of quantum mechanics are of an amazing accuracy.
But neither this nor the mathematical simplicity and beauty of unitary evolution in Hilbert space
should hide the fact that a fundamental ambiguity enters at the very point where mathematics
makes contact with reality: Measurements! Measurements of what—if the wave function ¥ is
really the complete state? And as J.S Bell has said [1]:

It would seem that the theory is exclusively concerned about “results of measurement”,
and has nothing to say about anything else. What exactly qualifies some physical
systems to play the role of “measurer”? Was the wave function of the world waiting to
jump for thousands of millions of years until a single-celled living creature appeared?
Or did it have to wait a little longer, for some better qualified system ... with a Ph.D.?

This fundamental ambiguity, connected with “measurement” and collapse is also responsible
for the familiar paradoxes associated with orthodox quantum mechanics such as Schrodinger’s cat
paradox or the measurement problem. In the following we shall show that these difficulties simply
evaporate by giving up the unquestioned assumption that v alone provides a complete description
of the state of a system. Bohmian mechanics will permit an understanding of quantum phenomena
in a language everybody is using anyway: a theory of particles moving in space.
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4 Bohmian Mechanics

e State: (g,%),q € R*, ¢ € L,(R®), i.e., the state of an N-particle system is given by its
wave function and the actual positions ¢ = (qi,...,qn) of the particles which the theory is
about.

e Dynamics: The time evolution is given by a first-order differential equation for the positions
of the particles, with ¢ evolving in the usual way:

() = v (a(0) = St g0 1)
ihgtl)(:c t) = (- fj 2 ps V(z))b(z,1) (2)
ot N = 2my * ’

(Note that the role of ¥ is to generate a Galilean covariant vector field on configuration
space which guides the motion, and this leads directly to (1).)

This is all we need! It is a crucial property of this dynamical system that it conserves the dis-
tribution p = ||, which we call the equivariant measure. The quantum formalism, randomness,
Born’s rule—“If a system has wave function 4 then its configuration has distribution |¢|*”—and
all the rest emerges from a detailed analysis of these equations. No further axioms about measure-
ments are necessary nor is there room for any such axioms. That this is so was already sketched
by David Bohm in his 1952 paper [3]; a more detailed analysis can be found in [4]. Let us give a
summary of the main crucial features of Bohmian mechanics: In addition to being clear, objec-
tive and deterministic it also agrees with experiment. There is, however no need for collapse, no
measurement paradox and no need to split the world into system and observer.

Let us look at some simple examples.

4.1 Example: the motion of a Gaussian wave packet

Consider the time dependent one-particle wave function 1:(z) of a freely evolving Gaussian, which
starts at the origin with velocity vy and width . From (1) one obtains the velocity vector field and
easily solves the differential equation for the positions, obtaining the solution flow @, (t) := ¢(t) =

vot + goy/1 + t?/0*. Note that the motion is clearly non-Newtonian. Only in the limit of large
times, the particles move with constant velocity vo,(qo) := vo+¢o/c?, which means v, is a random
variable with a Gaussian distribution, centered around vy. Now let us define the momentum as the
random variable p := muv,,, which can be approximately determined by measuring the position
¢(T) at a large time T': p = mq(T)/T. Clearly the probability distribution for p is exactly the same
as the one obtained by projecting the initial state on the eigenstates of the momentum operator.
It can in fact be shown quite generally that for an arbitrary freely evolving wave function ¥,(z),
p is well defined, with distribution given in the usual way by the Fourier transform Izﬁo(p)P. Note
that p is not at all the same as the “classical momentum” given by m times the actual velocity.
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4.2 Example: the two-slit experiment in Bohmian mechanics

The particle passes through either the upper or the lower slit. The interference pattern occurs
because the wave function guiding the particle develops this pattern. Closing one slit will lead
to a different wave function and therefore to different paths and a different—or no—pattern.
The randomness observed in the experiment is due to uncertainty in the initial conditions, as in

classical chaotic systems.

5 Measurements/Experiments

Let us sketch an analysis of measurement-like experiments; for a much more detailed analysis see
[5]. We describe the combined evolution of a composite system consisting of System @ Apparatus.
Let the initial state of the apparatus be ¢, and let ¢; denote the orthogonal apparatus wave
functions corresponding to the possible outcomes. (Think of separated wave packets corresponding
to possible pointer positions or patterns of ink spots on a computer printout—which may, for
example, register detection by a photocounter.) We assign the values A; to the “pointer states”
¢i. It turns out [5] that if an experiment is repeatable then in the simplest case there exists a
basis {|);}} of the system Hilbert space such that under the interaction with the apparatus

[¥:) ® |do) — [t} ® |:)- (3)

(Note that the unitarity of the time evolution together with the orthogonality of the |¢;) forces
the orthogonality of the [¢;).)

An arbitrary state |#h) = Y ¢|i;) may be expressed in this basis, with ¢; = (¢¥il$). The
linearity of the time evolution implies that '

k) ® [d0) = 3 cilthi) ® I8). (4)

Thus using Born’s rule—which we remind you is a consequence of Bohmian mechanics—we
find that |(s;]¥)|? is the probability to find the outcome A;.

Let us make a remark on the “measurement problem”: Certainly the wave function is in a
superposition after interaction with a superposition of eigenstates, but the complete state is given
by the wave function and the actual configuration. The trajectory will end up in but one of the
different disjoint wave packets, and thus the dynamics does not lead to a macroscopic superposition
of outcomes, as would be the case if we had only a Schrédinger wave function. Moreover, for the
further evolution the influence of the other wave packets turns out to be FAPP negligible. In this
way collapse is merely a matter of convenience.

Now let us make contact with the usual operator formalism. Define the self-adjoint operator

A= 30 A ) (il ()

With this operator we can calculate the statistics for the outcome in the usual way.

The fact that a self-adjoint operator on the system Hilbert space alone suffices to describe the
full statistics for the outcome of the experiment supports the misleading idea that some preexisting
properties of the system have actually been “measured,” the apparatus playing a purely passive
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role. That this is not generally the case, that we rather have to regard the result as being the
joint product of the system and the apparatus, has been emphasized by Bohr.!

For the analysis of more general experiments it is convenient to introduce the following no-
tation. The map A — P(A) := Ty.ea |:){¢:], from subsets of R to projectors on H, is what
mathematicians call a projection-valued measure (PV).2 With this notation (¥|P(A)]¢) is the
probability to find the result in the set A. Note that A = [AP(dX).

It turns out [5] that if one doesn’t assume repeatability a positive-operator-valued measure
(POV) O(A) plays the role of P(A). These operators need not be projectors, i.e., it may be that
O(A)? # O(A). The probability of finding the result in the set A is given by ($|O(A)|#). Define
the self-adjoint operator B := ¥ \;0();) (= [ AO(d})). Thus the expected value of the outcome
is given by (#|B|). Note that knowledge of B alone does not provide complete information
about the statistics of the outcome, as it does for repeatable experiments, because in general
B™ # Y A*O();). Thus for nonrepeatable measurements it is not possible to cast the information
about the entire statistics into a bilinear form involving a single self-adjoint operator.

POV’s have been proposed as a means of providing a generalized description for “fuzzy
measurements”[6]. Note, however, that POV’s arise naturally from a measurement analysis in
Bohmian mechanics, in which there is no “intrinsic fuzziness.”

6 The Phase Problem in Quantum Optics

6.1 A brief history of the phase operator

For the following discussion it will be sufficient to focus on a single mode of the electromagnetic
field, which is well-known to be equivalent to an one-dimensional harmonic oscillator. We will
use the standard notation a,a! for the annihilation and creation operators, and N := a'a for the
number operator.

For a classical harmonic oscillator the phase is a respectable observable. What is its quantum
mechanical counterpart? We give a short sketch of some of the main approaches to the “phase
problem.” A detailed discussion can be found in {7].

e 1927 Dirac [8]: A polar decomposition of the creation and annihilation operator into e®VN :=
a, which seems to imply vV Ne™*® = at, “yields” [®, N] = —i. Dirac noticed himself that this
definition leads to contradictions, e.g., if one takes the expectation value of the commutator
for an energy eigenstate.

o 1964: Susskind and Glogower [9] prove that there is no way to define an unitary operator U
with the property Uv/N = a. Therefore there can be no self-adjoint operator ® such that
U = ¢'®, which explains the flaw in Dirac’s ansatz. They conclude that a self-adjoint phase
operator doesn’t exist.

e 1968: Loudon defines nonorthogonal “phase eigenstates” [10]: | \/; T2 0 €%n).

1Position measurements are exceptions. Position plays a distinguished role in Bohmian mechanics, as it does in

the real world.
2p? = p = Pt P(0) = 0, P(Q) = 1; P(UA;) = 3 P(A;) for mutually disjoint sets A;.
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e 1976: Lévy-Leblond, using the Loudon states, constructs a POV [11]: A — [, d¢|é)(¢|, for
A any subset of [—x, 7). '

e 1986: Barnett and Pegg introduce “negative-photon-number” states and define the unitary
operator [12]: e® := 3= |n}(n + 1|

o 1988: Barnett and Pegg suggest a limiting procedure, based on the definition of phase
eigenstates in a finite-dimensional Hilbert space [13]. [¢,) = 7:+—1 2 o€ m), ¢, =
do+2n/(s+ Dn,n=0...5 & := > o ®n|dn){(én]. The limit s — oo is then taken at the

end of any calculation.

e 1991: Mandel proposes an operational approach to the quantum phase [14]. He suggests an
experiment, together with some procedure to derive quantities he calls the “cosine and sine
of the phase difference.” He finds disagreement with the predictions based on the (second)
Barnett-Pegg operator or the Susskind-Glogower operator.

6.2 Discussion of the different approaches

Let us first address two questions which might now be irritating the reader: 1) How can it be
the case that we have a nonexistence proof and several explicit constructions of self-adjoint phase
operators at the same time? 2) What exactly is going on in this peculiar (hi)story?

The answer to the first question is easy. The nonexistence proof of Susskind and Glogower
tells us that there is no polar decomposition of the annihilation operator into a positive and a
unitary operator. None of the “phase operators” suggested by Barnett and Pegg provide such a
decomposition (if they serve any purpose at all, it is certainly not for this). But how can one
decide who is right? And, perhaps more to the point, what is the physical relevance of all these
operators? - -

This leads us to the second question. We are often told that for every classical observable
there exists a corresponding self-adjoint operator. Recipes such as “replace the classical Poisson
brackets by the commutator” are used as a guide to postulate the correct commutation relations.
This seems to work perfectly well for position and momentum but not for the phase. But so what?
Why should it?

We have sketched in (4.1) how to describe “momentum measurements” without invoking postu-
lated commutation relations. The analysis of the experiment shows that the momentum operator
as a multiplication operator in Fourier space yields the correct statistics. Note, however, that it
can be shown that for the actual velocity—certainly a classical observable—there is neither a cor-
responding operator nor a POV! This simply means that there is no experiment which measures
the actual velocity in the sense of section (5).

The POV proposed by Lévy-Leblond is an explicit example how to describe an abstract phase
“measurement” without a self-adjoint operator. In order to decide which is the “right” description
for the phase one would have to ask for the experiment which an operator or POV is supposed to
describe.® But what is the physical relevance of pursuing the question as to which experiments
are described by a given operator? Note, however, that for a given experiment, say Mandel’s

3This has been emphasized by Lévy-Leblond. His focus, however, was more on advertising a more general
formalism for describing experiments than on applying it to a special example.
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experiment, it is well-known how to calculate the photocount statistics, which is all that is relevant.
There is no room left for postulating operators or eigenstates. An analysis of the experiment at
hand shows what quantities are actually “measured” and which mathematical objects, be they
operators or POV’s or what have you, simplify the description of the predictions. And, as is
also stressed by Mandel, different experiments yield different operators. There is no unique phase
operator, nor do we need one. In other words: There is no problem!

7 Conclusion

We end by quoting Bell one last time [15]:

. in physics the only observations we must consider are position observations, if
only the positions of instrument pointers. It is a great merit of the de Broglie-Bohm
picture to force us to consider this fact. If you make axioms, rather than definitions and
theorems, about the “measurement” of anything else, then you commit redundancy
and risk inconsistency.
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UNCERTAINTY RELATIONS, ZERO POINT ENERGY
AND THE LINEAR CANONICAL GROUP
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Abstract

The close relationship between the zero point energy, the uncertainty relations,
coherent states, squeezed states and correlated states for one mode is investigated. This
group-theoretic perspective enables the parametrization and identification of their multimode
generalization. In particular the generalized Schrodinger-Robertson uncertainty relations are
analyzed. An elementary method of determining the canonical structure of the generalized
correlated states is presented.

1 Introduction

Advances in atomic physics and quantum optics have made it possible to examine and verify
many of the immediate predictions of quantum mechanics. The most celebrated of these is the
Heisenberg [?] uncertainty relation

(Ag)* (Ap)* 2 (g)g (1)

where

(Ag)* = (¢%) - (q)%, (2)
(Ap)® = (p*) — (p)? (3)

are the dispersons in the coordinate and momentum variable. The Heisenberg uncertainty relation
in the form

Ag-dp> 1 )
has been verified in gedanken experiments like the Heisenberg microscope and in the simple pic-
tures of de Broglie waves.

Since Ag and Ap have different dimensions their individual magnitudes cannot be compared
without choosing units for length and momentum. By a suitable scale change we could scale
them inversely as long as the unit of action is fixed; in this case the change is in the unit
of {mass?/(time)?} or equally well in the unit of length since action has the dimensions of
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{mass x (length))?/time}. Having fixed any such choice we can talk of the numerical values
of Ap and Ag. Another and earlier result of quantum theory is the existence of zero point energy
[?]. If p and ¢ are canonical operators satisfying the commutation relations

gp—pg=-th (5)

then the “energy” 1(p? + w?q?) has a nonzero minimum value:

2 2 2 wq—1p wq+1p hw
-— - ¢ e———— ———>h 2‘
p’ + w’q’) w{ T oo }+ 7 2 w/ (6)

Since the first term is non negative, w a'a, there is the zeropoint energy Fiw/2 for the ground state
which is annihilated by the operator

a = (wq +ip)/V2w. (7)

While the notation is new, the zeropoint energy is as old as quantum theory!
It is well known that there is an immediate connection between the two relations. For every
w, — 0 <w<oo

E(w) = (wg —ip)(wg +ip) 20 (8)

but this implies
w{¢?) + (p*) +iwlgp — pq) (9)
= Wwi{¢) —wh+(p*) 20. (10)

Hence the discriminant of this quadratic form should be negative: that is,
4 () (p*) 2 K. (11)

Noting that the deviations from the mean

Q=q-(g), P=p—{p (12)
also satisfy the canonical commutation relations we, derive
1
(@)(P? = 7 (13)
which is Heisenberg’s uncertainty relation.

We may therefore say that the zeropoint energy relation (6) was not invariant under the linear
canonical transformation

g— Q=q—{q) (14)

p— P=p—{p) (15)
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nor under

¢§— Q=whq (16)

p—+P=w_%p. (17)
Imposition of these canonical transformations on the Planck zeropoint energy inequality (6) gives

the Heisenberg uncertainty relation.
But there are yet other linear canonical transformations: the simplest one is

g — qcos § —w 'psinf (18)
p — wgqsin § + pcos@. (19)

While the Planck zeropoint inequality is invariant under this transformation, the Heisenberg
uncertainty relation is not. We get, for any 6,

{(qz) cos? 8 + (p?) sin® @ — (gp + pq) cos fsin 0} . (20)
h2

{(qz) sin? 8 + (p?) cos? 8 + (gp + pq) cos Osin 0} > T (21)

By an elementary rearrangement this gives

{(qz) + (1)2)}2 - {((qz) - (pz)) cos 20 — (gp + pg) sin 20}2 > K. (22)
By choosing
tan 20 = —(gp + pq) / {(¢*) - (¢*)} (23)
we get the inequality \
(@*)(p?) - (_qgj‘i_z_rg_)_ > %. (24)

This is the Schrédinger uncertainty relation provided we replace ¢ and p by ¢ — (¢) and p— (p).
It was derived by Schrodinger and by Robertson[?]. It is stronger than the Heisenberg uncertainty
relations and reduces to it in the special case of “uncorrelated states” for which

((g={(g))(p—{p))+pg) =0 (25)

or equivalently
(ap + pg) = {9)(p) + (P){q) - (26)

Even for a harmonic oscillator of frequency v this is not in general true and the correlation
oscillates with twice the frequency. So a Heisenberg minimum uncertainty state is not canonically
invariant. For the harmonic oscillator this has been known for decades. Dodunov and Marko
[?] have given a general systematics of such a derivation. The clue to the Schrédinger-Robertson
generalization of the Heisenberg uncertainty relations is the requirement of invariance under the
group of linear canonical transformations. The state of the minimum energy for the harmonic
oscillator with Hamiltonian

H= (0 +) = (a*a + 2) (27)
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is the vacuum state |¥) satisfying

al¥) =0 (28)
with the associated wave function
¥(z) = (v) " exp(-2?/2). (29)
This is a state of the minimum uncertainty. But the minimum uncertainty class is wider, among
these are
a|z) = z|z), z complex number (30)
with wave function
¥(a) = (e {~(z - 2)°/2} . (31)
These are the “coherent states” introduced by Schrédinger [?] and rediscovered decades later
in the context of quantum optics by Glauber [?] and by Sudarshan [?]. They constitute an
overcomplete family of states in terms of which every state can be expressed in infinitely many
ways; further in terms of them every density matrix can be exhibited as a sum of projectors |z}{z|
to the coherent states with distribution valued weight [?] and [?].
But the coherent states are not a canonically invariant set. The scale transformation (“squeez-
ing”)
1 -1
¢g—exp(wi)g, p—exw (w=%)p (32)
takes a coherent state into a new class of [?] states which are now called squeezed states. In terms
of a,a! these are the Bogoliubov - Valatin transformations [?]. The unitary transformation

It
V = exp { —iw}(¢p + p9)/2} (33)
accomplishes the squeezing: and thus the one parameter family of overcomplete sets of squeezed
coherent states with wave functions.

¥(z) = ()"t exp {~w(z — [12)*/2} (34)
labelled by 3 parameters w, Re z, Im z. For each w we have an overcomplete family of states.
This is still not general enough. There are still more canonical transformations that can be
performed which will make the state no longer a minimum uncertainty state in the Heisenberg
sense but which would be minimum Schrodinger uncertainty states. These are the correlated
states whose wave functions have been obtained by Dodunov, Kurmyshev and Marko [?]. A
simpler version of this is as a complex Gaussian:

P(z) = (r)'% exp [—% (ax2 — 2Bz + 7)] (35)

where a, 8,y are complex parameters satisfying (8 + ﬂ‘)2/(a + a*) = y+~*. The imaginary part
of # is arbitrary. These therefore contain two complex parameters

1
(Ag)? = o
2 ay Q2 2
@ = 3+ (3)
(ap+pg) - <q><p>—<p><q>=—2aij. (36)
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Making use of the appealing phase space picture introduced by Planck [?] for the quantum
oscillator, the ground state with the zeropoint energy (for w = 1) has a phase space patch which
is a circle with unit radius and an area = which is (2r) times the uncertainty. The mean value of
3 (p* + ¢%) within this circular disc is 2 which satisfied Planck. So his picture of the ground state
is a circle of unit radius centered at the orgin. By

-
NI "

Fig.1. Planck’s picture of the minimum energy state and the coherent states. The
coherent states are centered at the point (’—:%-'- , -2;‘7’,3'-)

displacing the origin to v/2 z we get the two parameter (one complex parameter) family of coherent
states.

Squeezed states are obtained by area preserving deformations of the circles into ellipses with
major (minor) axis along the coordinate directions.

el BN
~1

Fig.2. Planck pictures for squeezed states.
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When the ellipse is tilted we get the more general family of correlated states discussed by
Dodunov, Kurmyshev and Mariko. Of course this tilting alters things only for the squeezed states
but not for the coherent states.

Fig.3. Planck pictures for correlated states.

2 The Group Theoretic Significance of the States Which
Have Minimum Schrodinger Uncertainty.

The linear canonical transformations on a pair of canonical variables form a group SL(2, R) [~] T(2),
the semidirect product of the special linear group with translations. The minimum uncertainty
state of Planck are invariant under the harmonic SO(2) subgroup of this group; this is its stability
group. So the quotient of the canonical group by the harmonic stability group the correlated
states are in one-to-one correspondence with the elements of the coset of dimension 5 — 1 = 4.

These states are realized by single mode lasers and states with substantial squeezing and/or
correlation have been generated and identified.

It is a natural question to ask whether these notions and correspondences can be generalized
to n-degrees of freedom and multimode laser beams. Group theory can be invoked to get a general
answer to the problem.

3 Multimode Correlated States and Their Group-
Theoretic Relevance

Consider a system of n canonical pairs {¢-,pr}, 1 < r,s < n. The homogeneous linear trans-
formations are Sp(2n, R) and the translations are T(2n). So the linear canonical group is the
semidirect product Sp(2n, R) [~] T(2n) with n(2n + 1) + 2n(2n + 3) parameters. We seek canon-
ical invariants bilinear in the 2n canonical variables and look for the appropriate conditions to
get the minimum generalized Schrédinger uncertainty. We expect this to come from the ground
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state |2) annililated by all annililation operators (g, + ip,)/v/2 and states obtained from [2) by
the action of the linear canonical group. Since these involve individual harmonic SO(2) elements
for each degree of freedom and any O(n) rotation between the various degrees of freedom the
stability group of |Q?) has n + 1("2—'1-2 = in(n + 1) parameters, we expect a family with In(3n + 5)
parameters corresponding to the dimension of the coset space.

Even for small values of n this dimension grows rapidly; we adopt a more elementary method
to obtain the generalized correlated states. We describe in detail the case for n = 2 and remark
that the method generalizes for arbitrary n. The multimode coherent states are 2n parameter
states obtained by T(2n) acting on |(2). Let us consider the group Sp(4, R) which is a double
covering of SO(3,2) and has the same Lie algebra of dimension ten. This algebra can be obtained
by the three (p,p,), the three (¢.q,) and the four 3(g.p, + p,g-) which close under commutation.
The generic SO(3,2) algebra has two invariants, one of the second order and one of the fourth
order. If we consider the expectation values of the ten quantities (p,p,), (4:4,), 3 (grPs + Psqr)
they furnish a 4 x 4 symmetric non negative matrix which is bounded below by the zero point
energy

1. Let this matrix be denoted by:

€11 €12 @a b

d
T, = €12 €22 C _
“ a c fu fiz (37)
b d  fiz fa

By suitable harmonic SO(2) transformations in (¢;, ;) and in (g2, p2) this can be reduced to the
form

eq 0 o ¥
0 e ¢ d
w50 (38)
vV o 0 f2

By scale transformations independently for the two degrees of freedom we can reduce this to the
form

e 0 o V¥
0 e ¢ &
all clll f 0 (39)
¥ &0 f

Now harmonic SO(2) transformations in (¢;,p:1) and in (g3, p;) can be used to diagonalize the
other diagonal blocks to get

e 0 4 0
0 e 0 d
a 0 f O (40)
0 &4 0 f
Now the SO(2) rotation between the two degrees of freedom can be used to transform this into
e+ad 0 0 0
0 e+d 0 0

0 0 f+ad 0 (41)

0 0 0 f+d
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Further scale transformations in the two degrees of freedom can render this to the final form

251 0 0 0
0 g1 0 0
0 0 gy O (42)
0 0 0 g2

Thus there are two invariant quantities g;,gz which maybe recognized as the uncertainties in
the two natural modes . Note that g;,g; are both positive and not less than -;-h.
Naturally the minimum uncertainty state must have degenerate structure with

1

This is the vacuum state |Q) in the natural modes. The correlated states are obtained by the action
of the group Sp(4, R) T(4). The T(4) action demands that we replace ¢,p by ¢ — (¢), p — (p),
after which we may ignore them. Since the state |()) has a 3-parameter stability group we may
restrict attention to the quotient manifold of cosets.

This construction can be immediately generalized. We take the 4 x 4 diagonal block of the
9n x 2n matrix and carry out the transformations outlined in the previous scheme and then take
the bordering 4 x 2, 2 x 4 and 2 x 2 blocks. Now make orthogonal transformations between
the modes to make the 6 x 6 block diagonal with possibly unequal diagonal elelments. Scale
transformations independently in the three modes will make them diagonal with pairs of values
equal. Now the process can be repeated with the bordering 2 x 6, 6 x 2 and 2 x 2 blocks; and
repeating the procedure we can diagonalize the 8 x 8 matrix with

(p2) = (af) » (p2) = (a3),- .-, (P2) = (di) - (44)

This can be done with the 2n x 2n has matrix is fully diagonalized with adjacent pairs of diagonal
elements equal; that is the eigenvalues are

91,91,92’92,93»93,---,gmgn- (45)

This is the canonical form with n invariants ¢, 9z, . . ., gn With each g, 2 %h. The distinguished
generalized correlated states have degenerate eigenvalues

1
gl=92="°=gn=§h- (46)

This is the multimode vaccum state! We can get the multimode coherent states by displacements
which are the real and imaginary parts of z1,22,...,2s. Squeezed states are obtained by scale
transformations in each mode independently so that the diagonal eigenvalues became

Mg, AT 15y Angny A7 Gn - (47)

The displacements and squeezings introduce 2n + n = 3n parameters. But the generalized corre-
lated state is obtained by the full coset of the linear canonical group Sp(2n, R) T(2n) by the
stability group of the N-mode vacuum state |{2).

These correlated states maybe displayed explicitly but are too cumbersome. The multimode
correlated states have wave functions which are displaced Gaussians with phase factors. Depending
upon the experimental requirements we may obtain intensity correlations, photocount statistics
etc. directly. The number of parameters describing such correlated states are enormous and would
be restricted by the method of generation of such states.
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4 Discussion

Some remarks are in order about the correlated states in quantum field theory. As long as the
number of excited modes is finite, however many, there exists a unitary transformation from the
multimode vacuum state to the multimode correlated state. These unitary transformations are
generated by a quantity bilinear in the canonical variables. These operators are unbounded but
do generate unitary transformations. When the number of modes became infinite, the generic
correlated state cannot be obtained form the vacuum state they would be in a different Hilbert
space from the Fock vacuum. [?]

It was the purpose of this paper to demonstrate the close relation between the correlated
states and the linear canonical group; and to show that the correlated states which minimize the
Schrodinger uncertainties is related to the canonical multimode vacuum which is invariant under
linear unitary transformations of the modes. The generic wave functions are Gaussians with a
determined number of independent parameters.

The one and two-mode analysis is equally applicable to the propogation of the Gaussian Schell
mode paraxial wave fronts through a system of thin lenses which are, respectively, isotropic and
nonisotropic. This has been carried out elsewhere [?].

Correlated states are the generic family which include squeezed states and coherent states as
special cases. For each value of the complex parameter o, we have an overcomplete family of
states in the case of one degree of freedom. For the multimode case the parameter defining the
generic form (37) from the canonical form (42) are such labelling parameters.
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SUPERSQUEEZED STATES FROM SQUEEZED STATES

Michael Martin Nieto!
Theoretical Division, Los Alamos National Laboratory
University of California
Los Alamos, New Mezico 87545, U.S.A.

Abstract

Using super- Baker-Campbell-Hausdorff relations on the elements of the supergroup OSP(2/2),
we derive the supersqueeze operator and the supersqueezed states, which are the supersym-
metric generalization of the squeezed states of the harmonic oscillator.

1 Introduction

The concept of supersymmetry became of wide interest to physicists because of attempts to obtain
a grand unified theory of the fundamental interactions. In particular, such supersymmetric theories
predict that there are fermion partners to fundamental bosons, and vice versa. However, searches
for this fundamental supersymmetry have so far proven fruitless, and something of a, “Trust me,
we'll find it at the next accelerator”-attitude has emerged.

On the other hand, phenomenological manifestations of supersymmetry have been found at low
energies, e.g., in the contexts of nuclear physics [1], atomic physics [2], and WKB-theory [3]. The
supersymmetry and atomic physics interests [2, 4] of Alan Kostelecky, Rod Truax, and myself,
combined with our interest in coherent states [5, 6], led us to develop super-BCH relations [7, 8] as
a precursor to deriving a complete supercoherent states formalism. With Alan’s graduate student,
Beata Fatyga [9], we gave supercoherent states for three distinct systems: (i) the super Heisenberg-
Weyl algebra, which defines the supersymmetric harmonic oscillator; (ii) an electron in a constant
magnetic field, which is a supersymmetric quantum-mechanical system with a Heisenberg-Weyl
algebra plus another bosonic degree of freedom, and (iii) the electron-monopole system, which has
an OSP(1/2) supersymmetry. (I also want to mention that Alan, Rod, and I have joined forces
with Man’ko to obtain time-dependent supercoherent states [10].)

At the first International Workshop on Squeezed States [11], Alan reported on our supercoher-
ent states [12]. In the question and answer session of Alan’s talk, he was asked if we were trying to
extend our results to the supersqueezed states of the harmonic oscillator. (Honest! That was not
a set-up question.) Alan replied that we were, but that it was a harder problem. (If that response
had come from me, instead of Alan, you might now suspect that it was a set-up answer.) Anyway,
having committed ourselves, we hoped to do it before this Second International Workshop on
Squeezed States. And we did-by the skins of our teeth. The last calculation (although not the
last check) was finished on May 18.

!Email: mmn@pion.lanl.gov
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In Sec. 2, I will give a quick review of coherent states and squeezed states. (See, also, Ref. [5]).
Then, I go on to show how, given the superdisplacement operator for coherent states [9,12], one can
obtain supersqueezed states if one can first obtain the supersqueeze operator. This supersqueeze
operator is derived in the following section. I conclude with a description of the supersqueezed
states. Further details and results will appear elsewhere [13].

2 Coherent states and squeezed states

In the Schrodinger formalism, those states which minimize the z — p uncertainty relation are

- 2
P(z) = [27a?]~ /4 exp [—- (x 203:0) + ipoa:] , (1)
o = Soo = S/[2mw]'/. (2)
When S = 1, these Gaussians have the width of the ground state of the harmonic oscillator with

natural frequency v = w/(27), and are the coherent states. When S # 1, they are the “squeezed
states” of the harmonic oscillator. Their uncertainty product evolves with time as

Az (AP = % [1 + % (52 - 512-)2 sin2(2wt)] . (3)

In the (displacement) operator formalism, the coherent states are given by

D(a)l0) = explaa’ — aallo) = exp [~ lal’] £ S=in) = o, @

where |n) are the number states. The displacement operator,D(a), is the unitary exponentiation
of the elements of the factor algebra, spanned by a and a':

D(a) = exp[aa’ — a*a] = exp [—%lalz] exp|aa'] exp[—a*d], (5)

where the last equality comes from usmg a BCH relation. With the identifications Re(a) =
[mw/2]"/2z, and Im(a) = po/[2mw]'/?, these are the same as the minimum-uncertainty coherent

Obtaining the squeezed states froiﬁ the displacement operator coherent states is more compli-
cated than from the minimum-uncertainty coherent states. One starts with the “unitary squeeze
operator”

 atal
S(z) = exp za; —z'%a-] (6)
[ tqt ata+1
= exp G+ﬂ— exp Go(———?) exp [G_E] (7)
72 2 2
[ tqt (3+a'a) ,
= exp |e(tanh ,.).‘%] (coslhr> ’ exp [—e"¢(tanh ,.)%‘1] , (8)
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where z = re and Eq. (8) is obtained from a BCH relation. A normal-ordered form for the
second term in Eq. (7) is

1 \(+e'o) 1
(cosh r) - (cosh r)

Note that S(z) by itself can be considered to be the displacement operator for the group SU(1,1)
defined by

(a')*(a)"| - (9)

n=0

[ . (sechr — 1)"

1 1 1 1
K+ = Eatat, K_= Eaay KO = -2-((1?(1 + 5) (10)

The squeezed states equivalent to the 1 of Eqs. (1-2) are obtained by operating on the ground
state by

T(a,2)|0) = D(2)5(2)10) = (e, 2)), (11)
z = re'’, r=InéS. (12)
[¢ is a phase which defines the starting time, to = (¢/2w), and S is the wave-function squeeze of

Eq. (2).]

Although the operator method appears, at first sight, to be more complicated, it has a dis-
tinct advantage when one wants to consider supersymmetry. The operator method has a direct
supersymmetric generalization. The mathematics is clear, and so one does not have to solve the
problem of how to include the fermionic sector in the wave-functon formalism. That answer will
come out in the end.

3 How to obtain supersqueezed states

Recently, we used the operator method to find supercoherent states [9]. Among the examples in
this study, the supercoherent states of the harmonic oscillator were obtained. From the super
Heisenberg-Weyl algebra defined by

[a,a'] =1, {b,d"} =1, (13)

the superdisplacement operator was obtained:
D(A,0) = exp[Aal —Aa + 64" + Y (14)
= (exp[——;-|A|2] exp[Aa'] exp[—Za]) (exp[—-é—?@] exp[Ob“]exp[ab]) . (15)

6 and 9 are odd Grassmann numbers. They are nilpotent and they satisfy anticommutation
relations among themselves and with the fermion operators b and b'. A and ‘A are complex, even,
Grassmann numbers. Explicit calculation yields

D(A, 6)[0,0) = [1 — (1/2)36]|4,0) + 6] A, 1). (16)

The two labels of [0,0) in Eq. (16) represent the even (bosonic) and odd (fermionic) spaces. The
bosonic space contains an ordinary coherent state |A) and the fermionic space has zero or one
fermions. (See Ref. [9] for further details.)
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From the above it is clear that the supersymmetric generalization of the SU(1,1) squeeze
operator of Eqs. (6-8) is what is needed to obtain the supersqueeze operator and, hence, the
supersqueezed states. The group involved is the supergroup OSP(2/2). In addition to the su(1,1)
algebra elements of Eq. (10), it has five more:

J 1
M, = '2'(” b— 5),
1 1 1 1
@ = §a*bt, Q: = '2'05, Q@s= ga?b, Qe = Eabf. (17)

4 The supersqueeze operator
To obtain the supersqueeze operator as a product, one solves the t-dependent equation

S(Z,6;,t) = explt(ZK, —ZK_ +6,Q1 +0.Q; + 52Qs + 62Q4)]
7+ K+ g0Ko g7-K- 511 e#Mo PiQ4 o53Qs 2 Q2

= Sl(#,‘Yi, ﬁkvt)' (18)

By construction, g, the «;, and the B¢’s are functions of t. Thus, taking the derivative of Eq. (18)
with respect to t and then multiplying on the right by S~ yields

[dits] s = [%sl] S:7. (19)

This can explicitly be written as (“dot” signifies &)

[ZKy —ZK_ + 6:Q1+0:Q2+0:Q5 + 6:Q4)
= 1+K4
+ [e”"‘K*]"foKo[e-"*K"‘]
+ [e'”K* e"°K°]'jf_K_[e_"°K°e_""’K+]
+ SBB1Q15§1
+ SB[cﬁ’Q‘]ﬂMo[e'ﬂ‘Q']S'El
+Sg [63101 C“M°]B4Q4[e_“M° C_EIQI]Sgl
+S5 [eﬂxQx eMMo eﬁAQq]BaQ:s[e-ﬁ&Q( e~ #Mo 6-3101]5‘51
+Sp [eﬁle e#Mo o54Qu eﬁsQa]ﬂ'zQz[e—ﬁsQae—ﬁaQA e~ #Mo e-ﬁlQl]SEI ’

(20)

where
Sg = [e’”K‘* e"'°K°e"’K-], (21)

Note that Sp is the form of the ordinary squeeze operator defined in Eq. (7).

All the terms on the right hand side of Eq. (20) can be written in nonexponential form by
using super-BCH formulas and the graded commutation relations. When this is done, there are
really eight equations, one for each of the factors multiplying the eight elements of the algebra
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osp(2/2); i.e., an equation for each of the factors multiplying K4, Ko, etc. With some algebra,
each of the eight equations can be changed to a set of equations having only one time-differential
in each.

These eight equations can actually be solved as twenty separate, coupled, differential equations,
of simpler form. This is because the four even group parameters {4, 7;, 70, 7-} can each be
written as having three terms, containing products of zero, two, or four of the 8;, respectively, and
the four odd group parameters {;} can be written as having two terms, containing products of one
or three of the 6;, respectively. (We wll use a presubscript to denote this; e.g., 5, = (181) + (351).)
One takes the eight equations and expands all of the expressions in powers of the ;. The order-
zero, -two, and -four pieces of the even equations are separated and, similarly, the order-one and
-three pieces of the odd equations are separated. One places the lower-order solutions into the
higher-order equations. (Note that the boundary conditions needed are that the solutions must
all be zero when ¢ = 0. Then the supersqueeze operator will be obtained when we set ¢ = 1)

One can do this in a well-defined manner. In particular, the solutions shown below were

obtained by finding, in order: (ox), (074+), (07%0), (07-), (181), (182), (183), (184), (24), (27+), (27%0),
(27-), (351), (3B2), (3B3), (3B4), (4#); (474) (470) and (47-)-

In the solutions we will use the suggestive notation
r= (221, e = 2/2), (22)

where r and €% are now understood to represent Grassmann-valued quantities. Then, one can
make the replacements ' '
Z — re', Z s re ', (23)

Some care is needed because the quantity e is strictly defined only for |Z] # 0 and Z # 0, where
Z is the body of Z. However, the solutions given below are not affected by this. Even so, the

physical meaning of Grassmann numbers remains an open question [14].
We also define

¢ = coshy, 8 =sinhy, y=rt, (24)
= EOQEGI = UEOIOQ. (25)
With this, the complete solutions to the group parameters are:
p =0
1 . .
+§2—{[9101 et 3202]((2 - 1) + Wgole—t¢ —_ 31026"’](3 b y)}
i 1
+;; [c -1- é-.sy] , (26)
- fv*i]
T+ [e c

it .
— 2 B1i(sc ~ y) + E9Fi6y(c — 1)
+€7%0,0, 5% + 8,0, (sc + y — 25))
P 11 5 1
+—8r4c3 [(23/ +sy® - s) + c(gy —2s8) + (-gsc2 + ZSC4>] , (27)
Yo = [~2In]
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B

Ba

Ba

1 —ys id s
+=2—r;[y191(—c— +c—1)+e a102(z ),
2+ys

c

+e"¢3201(—% + 3) +3202( c— 1)]

+ ¢
8ric?

[~ 1~ 295) — el s +4)

+c*(2lnc+8c—3 —4ys — -}Isz)],

-~

—i¢ .
46,.262 )[6:6:(sc —y) — €'%0,0,*
_e'id’azal(c — 1)2 + ?202(86 +y— 23)]
be ¢ 2 11 ., 15 9, )]
TgriS [(2!/ +sy* —s)+ C('S—y —28)+ (sc ( 3 +2lnc) — 1° v,
1

=[s61 + (c — 1)e8)]

+(

~3

+4—:_§[520102(y — 2¢s + yc) + €48,0:0:(2¢(1 — ¢) + ys)},

YaBi + (e = Ve D]

+4_1,§[920192(3/C -8+ %(sc —y) + 00,6, (ys — 3(c— 1) — _;.32)],
%[(c —1)e'*8; + 36,

+-4_15[e£¢6231012(3’3 - 2(c — 1)) + 0:8:6:2(yc — s)},

%[(c — 1)e™**6; + 36y

+:{13[e"’¢920,92(—4c’ + 4c+ 2ys) + 016105(—4sc + 25 + 2yc)].

Setting t = 1 yields the general supersqueeze group parameters.

5 The supersqueezed states

Then, using the above group parame

and the properties of Grassmann algebra, the supersqueezed states can be found to be

T(A,6,2,6,)0,0) = D(A,8)S(Z6:)[0,0) =|A,6; Z,6;)

= k(e [ - 578)1(4,2),0) +01(4,2), 1)

0 Dl ha(at) [B1(4,2),00 + (1 + $90)1(4,2),1)].
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(29)

(30)

(31)

(32)

(33)

ters, the graded commutation relations among the generators,

(34)



where

Bo= 1 7l + ) + g5 Gn), (39)

ry = 1+ & f 1)[(2’70) + (470)] + & ::21) (270)% (36)
m(@) = 1+ 3l6m) + (e = A + 5lm) ! - A, (37)
ma) = LA e -3, (38)

As with the supercoherent states, we find that the supersqueezed states are a linear combination
of squeezed states in the bosonic sector with zero or one fermion in the odd sector. What is
different, however, is that the squeezed states are multiplied by a linear combination of boson
raising operators up to order four.

In the limits A — 0 and Z — 0, the supersqueezed states reduce to the “fermisqueezed states”

D(0,8)S(0,6,)[0,0) = :1 _ % (0_—‘:1) - ;5 (1%)] [(1 - %vo) 10,0) + 8]0, 1)]
2] e
+ ‘\% (%9_‘)] [(1 - %Pe) 2,0) + 612, 1)] : (39)
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Abstract

We present a convenient way to evaluate the information entropy of a quantum mechanical
state via the Glauber Q-representation. As an example we discuss the information entropy
of a thermally relaxing squeezed state in terms of its Q-representation and show the validity
of the corresponding entropic uncertainty- and Araki-Lieb inequalities.

1 The information entropy

Shannon and Wehrl were the first to describe the information of a quantum mechanical state in
terms of its probability distributions [1]. Later, there has also been a substantial amount of work
on this topic from the quantum optics point of view [2]. The question of comparability of the
information entropy with the Heisenberg uncertainty has been treated as well. The Heisenberg un-
certainty has turned out to be of enormous significance because of its experimental measurability.
However, it only takes the second moments into account whereas the information entropy is sup-
posed to be an exact measure of the information and thus of the uncertainty or non-information.
In comparison to the significant Heisenberg uncertainty inequality, there is a similarly meaningful
entropic uncertainty relation. Bialynicki-Birula et al., derived such an inequality more than 15
years ago [3].

In this paper we would like to put forward a possibility to evaluate the information entropy
as a function of the Q-representation since this representation is well-known for many interesting
quantum mechanical states and completely describes the state. In particular we here would like
to investigate the information entropy for the squeezed state which evolves to a thermal state via
an appropriate Fokker-Planck equation. Special interest is devoted to the entropic uncertainty
relation. As a major result we show that a squeezed state also obeys the minimum entropic
uncertainty relation. However, it turns out that the evolution of the squeezed state via the Fokker-
Planck equation, does lead to a change of the information entropy and the marginal contributions
but surprisingly does not influence the minimality of the uncertainty relation. This even means
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that a thermal state fulfills the entropic uncertainty relation with an equal sign. We moreover
investigate the Araki-Lieb inequality [4] for information entropies and find agreement with the
well-known results of von Neumann entropies for the thermally relaxing squeezed state.

We start off the paper with some basic facts on entropies and develop an expression for the
information entropy in terms of the Glauber Q-representation. The definition of the quantum

mechanical entropy is given by:

§ = -Tr{plnp} (1)
with 5 being the density matrix operator and assuming the Boltzmann constant to be 1. This
often called von Neumann entropy is zero for a pure state and non-zero for a mixed state. It is
moreover known to be constant for a closed system which arises from the fact that a unitary time
evolution does not change the eigenvalues of p.

Thus, normally, the evolution of the entropy of subsystems of a closed system is of greater
interest. Considering two disjunct interacting systems that form together the whole system being
described by j, we can introduce the reduced density operators j4 = T'rg{p} and pp = Tra{p},
where Tr4 and T'rp abbreviate the tracing over the variables of the subsystems A and B, respec-
tively. This leads to the definition of the entropy of the subsystem A: S(44) = —Tra{palnja}
and to the analogous expression for subsystem B by replacing A by B in the above formula.

These reduced-or here called marginal entropies describe information or more directly disorder
and uncertainty of A and B and are not necessarily time independent like the entropy of the whole
system S of Eq.(1). Information about the interaction of A and B is neither included in S(pa)
nor in S(ps) so that we expect the sum of S(p4) and S(jp) not to be smaller than S. And, in
fact, Araki and Lieb [4] proofed the following triangle inequality:

1S(pa) — S(pB)| < S < S(pa) + S(b)- (2)
Because of the close relation of entropy and uncertainty and moreover the existence of a lower
bound of S, the second inequality can be interpreted as uncertainty relation. The calculation of
the above entropies requires the diagonalization of the reduced density operators. Since this is
often difficult, the information entropy or Shannon-Wehrl-entropy was introduced according to:

S (5,0) = — Y_(elple)ln{elsle), 3)

€

with A
Ole) = ele). (4)

The corresponding expressions for the subsystems can be obtained by exchanging 4 by p4 or pg,
where the so far arbitrary operator O may be chosen differently. If we are dealing with operators
that can be expressed in terms of the annihilation and creation operators @ and a' of a boson field,
it is reasonable to consider the information entropy

3(ha) = - [ da(alplatin (~(alfla) (5)
= - / d*aQ(c)nQ(a), (6)
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where 1

Q(e) = =(alpla) ™

is the well-known Glauber representation of a state g, and where |a) is the boson coherent state
with the decomposition of unity [ d?aja){a| = =.

According to following calculations, the information entropy of a squeezed state is not zero
as opposed to the von Neumann entropy which is always zero for a pure state. This obviously
makes the information entropy more interesting than the von Neumann entropy. The form of
Eq.(5) as well as Shannon’s early work [1] suggest to define an information entropy for any phase
space distribution. The Q-representation, however, has turned out to be appropriate for realitic
measurements as shown in the analysis in terms of phase propensities [5] and heterodyne measure-
ments. [6] For the investigation of the entropic uncertainty principle for information entropies,
the marginal entropies are evaluated by inserting the marginal Q-representation in the above ex-
pressions, instead. Letting a; and a; be arbitrary coordinates in the complex plane of a, we thus

define
Qi(ei) = /dan(a-',aj) (8)

and

Si = - [ daiQu(e:)lnQi(e) 9)

for ¢, 7¢{1,2},7 unequal j. This leads to the entropic uncertainty relation for information entropies,
which, as a major result of this study, will turn out to hold for the squeezed state and its thermally

relaxing state.
In the following, we put forward the time independent information entropy of a squeezed state and

its evolution to a thermal state via the Fokker-Planck equation and evaluate the corresponding
information entropies.

2 Information entropy and entropic uncertainty relations
of a squeezed state

2.1 Statics

In this section the squeezed state is described by the time independent ()-representation

. 1 . th(s . .
UAe’) = 7o) P [‘Ia — a0l + 2 (0~ ao)? + (0" - 03] (10)
with the corresponding information entropy:
S= —/dgaQ(a, a*)lnQ(a,a*) =1+ ln% + In(e’ + €7°). (11)
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The letter s here denotes the squeezing parameters and ao describes the coherent state which has
been squeezed. We now want to compare S with the information entropies obtained out of the
marginal Q-representations. Those marginal information entropies are obviously dependent on
the choice of coordinates, where our considerations in the following will concentraate on the most

interesting Cartesian coordinates.
The Q-representation in Cartesian coordinates (a; = Rea, a, = Ima) has the form

Qessoy) = mops exp [~ ez = (on)e )| x e [ (e — (], (1)

leading to the marginal quasi-probability distributions,e.g.:

Q:(a;) = /

:ooo do,Q(az, ) = ﬂ—c}i(s) (W(l ;C—z’))ll") exp [—1 +262‘ (az — (ao)x)z] ,  (13)

and thus to the marginal information entropies, e.g.:

1 1. 1
S, = - / Qu(a2)lnQu(az)daz = 3+ 3l + Zln(1 +¢*), (14)
and correspondingly S, = % + %ln% + %ln(l + e¢~2*). Considering above equations, it is now easy
to see that squeezed states fulfill minimum entropic uncertainty

S = Sx + Sy, (15)

and that the Araki-Lieb inequality is valid as well: |S; — S| < S.

A similar consideration can be done for polar coordinates with a = re®® and ag = roe*®. The
integrals here are not as straight forward as in the Cartesian case. For special cases as the weakly
squeezed vacuum, however, it was possible to show the validity of the uncertainty and Araki-Lieb

relation (7).

2.2 Dynamics

Our interest now turns to the time evolution of the information entropy, its marginal information
entropies and its influence on the inequalities investigated in the preceeding section. The time
evolution of the Q-representation is governed by the Fokker-Planck equation

B ETEII T

%Q = [2 (Baa t 5a t 7 5adar Q- (16)
This equation follows from the well-known Fokker-Planck equation for the P-representation with
Qla,t) = f %éexp[—la — B|3)P(B,t), fi is the mean number of photons and 7 turns out to be

v(7 + 1).
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We now move on with the solution of the Fokker-Planck equation for ¢, assuming the squeezed
state to be the initial state at time ¢ equal to 0. Following reference [7] this turns out to be:

2p 1 o = Be=C/DH?
Qa,t) = /d ﬂmexp (—' 2 (0) ) (17)
8 nc;(s) exp [—lﬂ ~ ol %‘h(S){(ﬂ — ao)* + (B~ 05)2}] (18)
= expla(t)|al® + b(t)(a® + a'?) + c(t)a + ¢(t)"e” + N(t)], (19)

with n(t) = 2(1 - e=). For the rather long analytic expressions of a(t), b(t),c(t) and N(t) we
refer to reference [7]. At this point it will only be of interest that the Fokker-Planck equation has

preserved the Gaussian character of the initial state.
In the following we would like to point out that also the time dependent @ representation due
to the last equation leads to minimum uncertainty. Even more it turns out that every normalized

Gaussian function of the following form has this property:
Q(a,t) = expla(t)|af* + b(t)(a® + a™?) + c(t)a + *(t)a” + N(1)], (20)

where the real coefficients a(t), b(t) and the complex ¢(t) are now arbitrary with the only restric-
tions to fulfill: a(t) < 0, 2|b(t)| < la(t)| and N(t) is determined such that Q(a,t) is normalized.
Using the same notation as in the static case, some algebra gives rise to the corresponding infor-

mation entropy and marginal entropies:

S(t) = 1+lnr— %In(az(t) _ 4 (1)), (21)
St) = g+ glom— In(~a(t) - 25(1)), (22)
S,(8) = % + %m - -12-1n(—-a(t) + 28(1)), (23)

yielding immediately for all times ¢
S(t) = S:(t) + S, (t). (24)

At t = 0 this is in agreement with the minimum Heisenberg uncertainty relation of a Gaussian
wavepacket of the above form because the product of uncertainties in space and momentum is
exactly one. Since the Fokker-Planck equation does conserve the Gaussian character of the wave
function and does moreover give not rise to any phase factor, the Cartesian entropic uncertainty
relation is even fulfilled with the equal sign for all times. Thus we have also a minimum uncertainty
relation for the thermal state, what is not expected from the Heisenberg uncertainty inequality.

Moreover one finds for any Gaussian distribution that the Araki-Lieb inequality is equivalent

to:

l’l —a—2b

5 l < —%In(a2 —4b*) + 1+ lnr (25)

RPITY
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In the case of a thermally squeezed with its particular values for the coefficients a(t), b(t), c(t) and
N(t) an even stronger inequalility can be derived:

1:(8) = S,()] < S(8) - (1 +In). (26)

which , however, does not mean that all phase space distributions fulfill the Ara.kx Lieb or even

the 1mproved inequality [7].

In conclusion, we introduced a way to evaluate the information entropy in terms of the Glauber
Q-representation. Taking advantage of these entropies, we approached the question of comparabil-
ity of the Heisenberg uncertainty and the Shannon-Wehrl-entropy like description of information
for the example of a thermally relaxing squeezed state. The first just considers second moments
and is therefore a - though very important - approximation whereas the other is exact but aca-
demic. We find full accordance concerning the validity of the Heisenberg and entropic uncertainty
inequalities for the thermally relaxing squeezed state but as expected also observe disagreement
in the case when the equal sign holds.
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Abstract

Electron systems which have low dimensional properties have been constructed by squeez-
ing the motion in zero, one or two-direction. An isolated quantum dot js modelled by a
potential box with delta-profiled, penetrable potential walls embedded in a large outer box
with infinitely high potential walls which represent the work function with respect to vac-
uum. We show the smooth crossover of the density of states from the three-dimension to
quasi-zero-dimensional electron gas.

1 Introduction

Quantum wires and quantum boxes with three-dimensionally confined electrons constitute a con-
siderable part of recent semiconductor research (1, 2]. To study the optical properties of these
_systems, one should investigate the density of states (DOS) carefully, because the change in the
density of states affects directly the optical properties of these structures as a result of reduced
dimensionality.

The DOS of a low dimensional electron gas(LDEG) in the presence of magnetic field has
been discussed in many literatures measuring the magnetocapacitance 3, 4]. Furthermore an
electrical confinement which is usually controlled by (alternate) gate voltage [5] and, so called
the illumination method [6] are used to get a LDEG. The etched silicon filaments also discussed
recently as quantum wires or quantum dots [7). But the DOS of a LDEG of confined electrons
in small space which is constructed by reducing the size of the confinement is not discussed
frequently, see ref. [1]. A typical example of an ideal system having QOD charactor is that of
electron confined in a quantum box with impenetrable potential barriers. Despite of the large
number of studies on quantum wire and quantum box structures up to date, we have not found
research on the crossover of the DOS from a three dimensional DOS to a quasi-zero dimensional
DOS. In Section 2, to illustrate the formation of a quasi-one-dimensional electron gas(QIDEG)
using the classical electrostatic method, a simple metal-insulator-semiconductor(MIS) structure
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with very many parallel gate electrodes has been treated by making use of the conformal mapping
method. In section 3, we consider a rather artificial quantum box structure, so called the three
directional double-barrier resonant-tunneling structures(DBRTS) to study quantum mechanically,
and have calculated the local density of states and the global density of states. In section 4, the
crossovers of the DOS is calculated. Especially, we reveal the crossovers of the DOS from 3D to

QoD.

2 Construction of the very many parallel quantum wires

To study electrical properties of a quantum wire, we first start with a quasi-two-dimensional
electron gas(Q2DEG) at simple metal-insulator- semiconductor(MIS) structure. A Q2DEG system
with many parallel gate electrodes is shown in Fig.1 in which an electron gas is confined to the
x-z plane. We actually try to confine the electrons in the z-direction as well to form a QI1DEG
system. ’ '

y v
[4 A
v ! - ! “ "l i.i " n

! 1 Lnseteter
P 1 . v v wBwy v [3X .
°°'f'¥“|‘|'|”f Y kK 44T 0 sy F
Somisenducior
Fig.1 Fig.2

Fig.l A Structure of lymetﬁc gate arrays. Fig.2 The boundary condition in w-
plane.

To calculate the charge(density) distribution at the MIS interface (y=0 plane) to see Lhe
formation of a Q1DEG, we will use the conformal mapping method which is useful especially for
two-dimensional problems and we assume that significant changes in the electrode potential (and
thus is density in the channel) cause only a slight change in the near junction band bending.
This type of approximation has been used by Shik (8] to calculate various properties of the MIS
_ structure. . . o
The problem is solving the Laplace equation in insulator region.

ik B

—6'3—2‘0-79?:0 (1)

with the boundary condition;
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At y = d, ¥ |yuq is alternate gate potential V; and V; and at y = 0, ¥ |,u0 is constant, i.e.
equipotential surface. The next step is getting the distribution of the surface carrier density.

n(z) = Tre By ly=o0 - (2)
We solve the problem by taking the following conformal transformation [9}.
W=U+iV=e*/lz=z4+iy

where d is the thickness of the insulator, Now the insulator region is mapped on the upper half
plane and the boundary condition is given as in Fig.2.

After getting the potential which satisfy the boundary condition, we now get the electron
density distribution n(z) analytically from Eq.(2):

n(z) = %‘e’-’[l + (W/Va)™ S (=1)™" < sinb((2n - 1)ra/2d)
aml
[cosh(xz/d) + cosh((2n — 1)/2d)] >] 3)

where a is the gate interval and m is the number of gates.

oA
i . ettt
e .7
— s 2 Pred
i i ad
= - Lo
T s
w 7
;
o
g g 1 0 0 T 0 g
W
Fig.3 Fig.4

Fig.3 The surface charge density vs. position.
Fig.4 Crossover of the global DOS from 3D to 2D in the range Uy = 0 to [, = 20,
as a function of £/Eq. Here U, takes the values 0, 2, 12, 16, 20.

A typical density distribution is illustrated in Fig.3 where we can see immediately the many
parallel QIDEG (eventhough we show here only two wires). The one dimensional electron density
of the order of 10%/cm is obtained for the typical operating gate voltage when a is 1000A. We
also investigated the case of anti-symmetric gate voltage. Similar results have been obtained but
in symmetric case it is easy to construct one dimensional electron channels especially for smaller
number of gates. In our calculation we took a/d = 1, which satisfy the first approximation, y = 0
plane is equipotential. ‘
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3 The quantum bo:_c model and the DO

Now we come back to quantum system w:th s delta-proﬁled qumtum box Usually a quantum dot
is an element of the array of quantum dots. But the interaction among quantum dots decreases
rapidly with increasing dot separation [10] and is unimpotaat for the usual experimental situation

(11},

Therefore a separated single quantum box is taken for our study. For a rectangular wire(L ;) «

Ap), Arora and others[12] used the impenetrable potential walls, but in this paper we consider
three sets of penetrable barriers. We start our calculations with the model, i.e., the typical three
directional DBRTS, which consists of two thin(~ Mﬁm-,b layers, uepuated by a thin
GaAs layer along all three dxrectxona The potential is expressed by

V(z,5,2) = Vib(z + 0) + 6(z — a) + Vob(y + ) + 6(y = ) + Web(z + ) + 6(z —c).  (4)

In this potential, the six Al,Ga,_.As potential barriers have been replaced by §-functions with

sirengthes V},V; and V4 in the z,y, and z direction, respectively. The parameters V(i = 1,2,3)
are given by

Vi=dAVs (8)
where d; are the barrier widths and AV are the conduct:on-bmd discontinuities. In order to deal
with finite density of states,[13], we must place our structure in a large impenetrable rigid box
extending from —L/2 to L/2. With proper boundary conditions(14], the Schrodinger equation is
separable. we can write the wave function in the product form

¥(r) = p(e)p(y)¥(z) = I'I ¥, | (6)
[1 3]
The separated wave functions, ¥,, satisfy the reduced equations.
V." + [2m./A%)[E; - V¥, =0 )
with s
E=YE (8)

i=]

Here E is the total energy corresponding to the Hamiltonian H and Ei(i = z,y, ) is the energy
cigenvalue of ¥,.
The local density of states in the DBRTS has been obtained in various cases [15]. It is defined

as a function of r = (2,y,2) and E by
N(z,y,5E) = —(2/x)ImG(r,r’ E)
= 23 Y TN | Wan(2) Pl Wan, (¥) 1P| W, (2) P 6(E = En), (9)

afy ks h, h.

where the factor of 2 implies spin degeneracy, G(r,r’; E) is the single particle Green's function,
and a, 3, and (= ¢ or 0) label state parity. Next we consider the global DOS N(E). It can be
calculated by taking the integration over the box volume,

N(E)=8/°‘dz/°bdy'[dzN(z,y,z;E). (10)
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The amplitude of the wave function inside the well for both even and odd parities of z,y, and =
componenets are given elsewhere[14]. N(E) can be rewritten as follows:

NE) = @) [ dnlGulm) + Gulpr) + (Gulpr) = Gulpr))sin(2p1)/ 2]
x [ dplGu(pa) + Gulpa) + (Gulps) = Gulp))sin(2p2)/ 23]
x [7 dnlG.(ps) + Gulps) + (Gulps) — Culpa)) sin(2m) 2mlS(E ~ E2). (1)

The properties of functions G,(p;) and G,(p;) are aiready revealed in Ref.14.
When we take appropriate limiting cases, the Eq.(11) recovers all the well-known expressions
of the DOS of 3D, 2D, 1D, and 0D. since the calculations are straightforward, we haven't repeated

here.

4 Crossovers of the density of states
Now we consider crossovers of the global DOS from a high dimension to a low dimension.

4.1 From 3D to 2D

This case may happen when two of three potentials U/s(see the reference 15) approach zero, while
the remainder varies from zero, i.e., 3D case, to infinity, i.e., 2D case. The Eq.(11) can be modified
as

2 - /3
AN = [ dplGutn) + Gulon) + (Gulpr) — Gl sine)/2p1) (12

The result of the numerical behavior of Eq.(12) is shown in Fig.4 and indicates the transition of
the DOS from 3D to 2D. In this case we take U; = U; = 0, U; changes from 0 to 20, and E/E,
varies from 0 to 8. Higher values of U, correspond to a staircase-like 2D behavior which shows
steps at E/E, = ? with [ = 1,2,3,--..

4.2 From 2D to 1D

This corresponds to the case of Us going to zero, U, to infinity, and U; varying from zero, i.e., 2D
case, to infinity, 1D case. So G(p3) = 1,G.(p1) = * L 6(pr — (1 +1/2)%),Go(pr) = Té(pr - (I +
1)x). Then we can get the modified equation of N(E) as follows ;

252 ] » «Eo
e NE) = 5 [ dplGu(p) + Gulp) + (Gulow) - Gulp) sin(apa) 2

4cm,
x [1/[(x/26)*E/E, - ((m + 1/2)x/a)’ = (p2/)’]'/?
+ 1/[(x/2a) E/E, — (m + 1)x/a® — (pa/ b)'}'/?). (13)

The Fig.5 shows the graphical result, that is, the crossover of the global DOS from 2D to 1D. In
this case, for the sake of convenience, we take a = b,Us = 0 and Uy — oo,U; takes the values
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ofO 2 8, 16, 29, de/E utakenfromOOtoSO memiseeghatthentepsat E/E, =1,

4,9, ---, that is, the two dimensional band edgea, are shifted to peaks at E/E, = 2, 5, 8. 10,

- lee,, the one dimensional band edges. As U; increases, the motion of confined electrons along -

the y axis atarts to shrink and is guided only llong the 2 axis. This weak additional confinement
shifts the 2D band edges towards higher energies and finally the typical 1D characteristics of the

DOS comes to bevisualized. Higher values of U; correspond to increased sharp peaks of the DOS -

of the 1.D quantum wire case, which are in good agreement with those of Arakawa and Sakaki
(13] and of Tsang (16). The values at E/E, = 5 and 10 are roughly twice those at E/E, = 2 and
8, respectively, which comes from the double degeneracy of the eigenstates. Similar discussions
were treated by Berggrent and Newson [17] in the case of the 2D electrons in the presence of a

magnetic field.

i i (3
(Y13 ' -t
i i oy
1
i : -t
! L X33 -—
a— - -y
| 1 &7
(%14 1t = ™
i | . 2 ol
B L
o1 _l ' f o
Kk " ; L
Lo ' T
AL ; "
. M ] s
"y
[} k) 1 * M

Fxg 5 Crossover of the ;lobd DOS fmm 2D to IQ vljere we take U,
0, 2, 8, 16, 20. Higher values of U; correspond to a sawtoothlike 1D \Wior.
Fig.6 Crossover of the global DOS from 1D to 0D. Here we take U, = : U = o0
and Uy = 0, 2, 10, 20, 80. Higher values of U, oorreapond to a sharp line shape 0D

behavior.

4.3 Prom ID to 0D

In this cue, we ;;ke b&h U, md Uz t.o be mﬁmty, a.nd Us va.ry from zero, lD case, to infinity,
0D case. Then Eq (11) bécomes

NE) = @m L [

l,mml

x 6|E - ft’/2m¢)(h'/2a)2 + (mx/20)* + (ps/c)? (14)

Ge(t) + Go(t) + (Go(t) = G.(t))sm(zt)/zt (15)
[EJE. =P -mi\*

J2(E/E.)? , ,
dps[G.(p3) + Go(ps) + (Ge(ps) — Go(ps)) sin(2p3)/2p3)

(2E,)N(E) = Z

l,m=l
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where t = (¢/2)(E/E, - B - m?)'/2.

Fig.6 shows the transition of the global DOS from 1D to 0D. For the sake of convenience, we
put a = b = c. The Eq.(15) recovers the well-known DOS of a quantum dot [16], when we take
Us to be infinity. Sawtooth type maximums at E/E, = 2, 5, 8, 10, -- -, are now moved to the
positions at E/E, = 3, 6,9, 11, - - -, as the strength of Us increases. When the confining potential
increase, both primary peaks and secondary ones appear, which reflect the coexistance of 1D
and 0D behavior. The secondary peak with the lower energy is a reminescence of the 1D DOS
shifted towards higher energy due to the additional confinement, and the primary peak (higher
energetic peak) arises from quasi 0D states. Bacause the differences between peaks are so high, we
used different scales for the DOS axis ranging from 1.0 to over 2000. The DOS clearly shows the
potential strength (U;) dependence of the spatial quantization through E,. This kind of secondary
peaks are also shown in many experimental data of a transport measurement [18]. We know that
the electron systems used in above experiments are in an intermediate state between 1D and 0D,
because the potential strengths are not infinitely high.

We believe that this kind of DOS transition which shows intermediate states will also occur in
real systems where, for example, the barriers have finite widths. For barriers with finite thickness,
the effective mass of the electron changes in passing from the quantum-well region (GaAs) to the
barrier regions (AlGaAs) of the structure. Bruno and Bahder [15] have considered this for the one
directional DBRTS case and showed that the DOS at the low-energy subband edges is higher than
the DOS at the same energies in the absences of barriers (for delta-profiled barriers). In our case,
we can estimate that our result for the DOS will be increased a bit upward at the same energies
because of the additive form of the potential which we have taken.

In this paper, first we showed as an example the formation of many electron wires using the
conformal mapping method. Next, considering a penetrable quantum box, with a volume of a
axbxc, in a very large rigid box of volume L3, we calculated the general form of the local and
global DOS.

The merit of this model is as follows :

1) the model is simple to handle and easy to calculate analytically,

2) in this model, one can recover the results of all the limiting cases of the 3D, 2D, 1D, and
0D,

3) starting from one equation we can discuss all three crossover cases.
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Abstract

Following a brief review of the original Casimir and Aharonov-Bohm effects, some other
effects of similar natures are mentioned. A Casimir interaction between AB fluxes is pre-
sented. Possible realizations of the Casimir effects for massive charged fields in solid state
structures; and a new AB effect for photons are suggested.

1 Casimir and Aharonov-Bohm Effects

There are two types of quantum mechanical effects which can be attributed to the non-trivial
topologies of the configuration or phase spaces.

First kinds of these effects are named after Casimir {1]. When the space is bounded the vacuum
expectation value of quantized fields acquires non-zero values and becomes space dependent, which
then creates a force on the boundaries. The attractive force between the parallel conductive plates
is the first example of this kind [1]: the vacuum fluctuations of the electromagnetic field produces
an attractive force on the unit area of the plates given by F = —(7?/240)(hc/a*) where a is the
seperation of the plates. This force is already observed in experiments [2]. The topological nature
of this effect is in the fact that the field momentum perpendicular to the plates is discretized; i.e.,
the effective topology is not R® but S! x R?.

The second kind of effects are known as the Aharonov-Bohm (AB) effects, which involve the
electron field: when a confined flux is placed in the space, the electrons moving in te outside region
pick up a phase which is observable in the interferance experiments [3]. In this effect the topology
of the plane perpendicular to the flux line is multiply connected.

These exist some other examples which are similar to the above mentioned effects:

Several calculations have been made for Casimir effects involving boundaries of different shapes
[2]. Examples with moving boundaries are also studied which are used to obtain squezzed states
of light [4].

1Mailing address.
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Some of the physical effects which have been proposed to be similar to the AB effect are the
followings:

Introducing an impenetrable charged line in place of the magnetic flux and replacing the
electrons with neutral magnetic dipoles one obtains a system equivalent to the AB effect [5].

AB experiments involving the correlated charged particles are also proposed. Ideas involving
electron-positron pairs extended to obtain AB effect for the effective photon field [6].

2 An Interaction Connecting Two Effects

Consider two parallel, tightly wound solenoids, confining fluxes ¢, and ®; in them, which are seper-
ated by the distance a. The vacuum expectation value of the energy for the massive, charged field

in the region outside the flux lines have a finite “interaction” term depending on &,®; and on a.

For a scalar charged field the interaction energy in the slice of space with unit thickness having
its normal parallel to the ﬁuxes is

he AZAL | _ed

E"x"z =-27|’2 a2 y ='27 (1)

Note that the mass of the ﬁéldrd'o;s not contribute to the interaction term which only appears
in the self energy terms involving ¢} and ®? seperately. The energy (1) leads to an attractive
force on the unit length of the flux lines given by

0 Fc A2A2
F0103 = —a_aE°102 = = ]7 2

(2)

w2 a3

The above force is derived for a hypotetical scalar, charged field. For charged fields with spin,
for each spin degree of freedom we expect to thave a force equivalent to (2). For example for the
electron field the force should be multiplied by two.

If the fluxes are quantized, for integer fluxes, fields with integer charges, that is e*, u*, 7
particles contribute to the Casimir interaction. On the other hand the quark fields can contribute
only to the interaction of the fluxes quantized to the one or two-thirds of integers. In conclusion
we can say that the Casimir force between the quantized AB fluxes may count the number of
families [7].

+

3 Comments on Possible New Realizations

The recent developments in solid state physics enables one to create two-dimensional and one-
dimensional structures (=quantum dots) in which we can trap charged particles. These structures
my raise the hope of observing new Casimir effects involving massive fields.

Finally we like to suggest an experimental set up which may realize an AB geometry for the
photon field: In the double slit experiment, if we place an infinitely long, thin, neutral and perfectly
conductive wire perpendicular to the incoming light beam, we expect to observe an AB type effect
for the photon field. This, unlike the one suggested in Ref.[6], would be a purely neutral AB effect.
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Abstract

The eigenvalue problem of the operator a + ({at is solved for arbitrary complex ( by
applying a nonunitary operator to the vacuum state. This nonunitary approach is compared
with the unitary approach leading for |(| < 1 to squeezed coherent states.

1 Introduction

The eigenvalue problem to linear combinations of boson operators in the standardized form a+CaT
can be solved with squeezed coherent states only in the case |(| < 1 when it is equivalent to the
eigenvalue problem of an operator xa+ paf under the condition |«|*—|u[* = 1 with the substitution
¢ = £, (¢, 5, p arbitrary complex numbers) [1]. This corresponds to the unitary approach because
the squeezed coherent states can be obtained by applying unitary squeezing operators to coherent
states [2]. However, this eigenvalue problem can also be solved for arbitrary complex ¢ with a
nonunitary approach providing in the limiting case { — oo even the solution of the eigenvalue
problem for the boson creation operator al. The corresponding eigenstates are not normalizable
for [(| > 1 and are not states of the usual Hilbert space H (Fock space) in this case but they are
states of a rigged Hilbert space K’ in Gelfand triplets of spaces K C H C K’ [3]. Such states
that do not give finite expectation values for relevant operators as, for example, for the number
operator could be, therefore, considered as pathological ones. However, they play an important
auxiliary role for the formulation of a new kind of orthogonality and completeness relations on
paths through the complex plane of eigenvalues, where at once two dual states belonging to the
parameters ( and (' = 7 or{(" =1 are involved [1].

2 Nonunitary approach to the eigenvalue problem

The solution of the eigenvalue problem

(a + ¢at)les ¢ >= aja; ¢ >, (1)
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can be represented in the number-state basis [n > in the following nonnormalized form

o o () () o

o g /] k k
R Tl O G VL S
= ;:; vl ; Fi(n - 2K)! (w) In >, @
or by derivatives of a Gaussian function in the form
cvmem (B o
jo; ¢ >=exp (%)g o7 3o exp (_2C) jn>. 3)

Substituting in (2) the number states by the generation from the vacuum state, one obtains by
means of the generating function of the Hermite polynomials H,(z)

lo; ¢ >= exp (aat - g-ah) [0>. (4)
Two special cases are easily obtained from these formula, the coherent states |a;0 >
= a" aa®
|a; 0 >= ; W [n >= exp (—-2—> la >, (5)

and the squeezed vacuum states |0;( >

¢ >= 3 BB qmiam > ()

The nonunitary operator exp (aat - gah) does not preserve the normalization of the states. The
corresponding normalized states

I 0

o (1= e e | -
056 >nerm= (1= (P exp { -2 HEE

are only possible for |{] < 1.

The expectation values of the canonical operators

h . . ) .
Qy) = @ +ale), P(y) = -i\/§<ae-~» ~ale), (8
denoted by cross-lines are

- W] _ =iy ., —1p - 12¢
Q(‘p)=\/§ae (1—C¢"e 1)_+C?.e (1-¢e ),
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S [haei(1 + (Cem) - ateT(1 + ()
P(‘P) = —-z\/; T ¢ ; (9)

and their variances are

—3_ | 3 (1 — Cem)(l _ cae—mw)
@ay = pumee e
@GP = ST (10
The uncertainty product
2 3¢ _ /e ,—20\2
@awY GPy = 5 {1- L= Cer (1)

is the minimal possible one for 4 angles @..: according to

2

v = &, Bl Pl = (12)

corresponding to the extreme values of the variances

R1F (]

Oy = PLEN mppy = A2l

21F ¢l 1%

212

One has pure amplitude (phase) squeezing if the minimal (maximal) value of (AQ(pest))? cor-
responds to P(pes:) = 0. This leads to the following coordinate-invariant conditions for the
arguments of the Hermite polynomials in (2):

a
1. amplitude squeezing, —= real numbers
v ’
2. phase squeezing 2 imaginary numb
. —= ers.
V2

a .
In the more general case, ﬁ is a complex number. The expectation value of the number operator

is

- _ a—(a‘ a-_cua CC'
N‘(l—cc-)(l—cc')J'l—cc" (14)
and its variance

— (1 +(¢)a=2(e") (1 +(¢")a” = 2(*a) 2¢¢°

(AN)? = T + T=F (15)

The nonunitary approach provides a new convenient parametrization of the squeezed coherent
states. '
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3 Unitary approach to the eigenvalue problem

The unitary squeezing operators

Ste,n = 1°,67) = exp {50 - € P+ in aal + ala)} (16

transform the basis operators a and al according to

(6 m, ) (w0t = (@,ah) (714))

she she
k= che—in5 u = &2 e = I 7B, Iaf = [l = 1. (17)

The solution of the eigenvalue problem of the operator a + (at is obtained by the following
application of the unitary squeezing operators to coherent states |y >

i ah)s(e, = (xa + pal)S(¢,n,
\/—W(+( )(£n£)\/—ﬁ> (ka + pa")S(&m, € )y >

= s |2 > (18
| VI-KE VISR
where x is an arbitrary angle and ¢ and 7 are given by '
e x(* sin x
= ———b = -—=X_y,
1-[(] 1-[¢?
<2 I¢1? — sin® x
0= Ars .
Vi o
By choosing x = 0 one finds
C 02 - Cad}
a5 C Snorm= €X 7+ 1 AloN
¢ (-5

e 1 rs q *a? _ ¢al? a
xp{leIA h(————m)(( ¢ )}‘ > (20)

The unitary approach is restricted to |¢| < 1.
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4 Dual states and eigenstates of the creation operator

The states < %; E‘:l are left eigenstates to the operator a + ¢ al according to

g 1 t g 1
<—;—\(a+¢a')=8< =], 21
C- Cn ( C ) C‘ Co ( )
and they are dual to the states |a;( > in the sense of the orthogonality relation
L] 2 .
< —/z:; Cl_-l o;( >= y/2x(exp (%C-) §(a - B), (22)

and of the completeness relation

1 o? a1
\/mjcdaexp (—EE) Ia,( >< (—., F' =/ (23)

The integration path C through the complex plane is widely arbitrary with the only restriction

that it it must begin in one sector and end in the other sector where exp (—‘;—:) vanishes in the

infinity for fixed values of (.
The eigenstates of the creation operator at according to

af|B;00 >= B|B; 0 > (24)
are s = (1) 8
- —1) "
100 >=exp (~al 35 ) 80810 >= 3 7 d(Bln > (29

where §(8) is the one-dimensional delta function of complex argument (analytic functional). They
are orthogonal to the coberent states |a;0 >

< a*;0|8;00 >= 8(a - B). (26)

This relation shows also that the ccherent states are already complete on paths through the
complex plane.
More details and references can be found in {1].
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Abstract

The prescription for introducing a gauge
transformation into a quantum transition amplitude,
nominally well known, contains an ambiguous feature.
It is presumed by some authors that an appropriate
transformation of the phase of a wave function will
generate the associated gauge transformation. It is
shown that this is a necessary but not sufficient
step. Examples from the literature are cited to show
the consequences of the failure of this procedure. One
must distinquish between true gauge transformations
and unitary transformations within a fixed gauge.

1. Introduction

The necessary procedure to introduce a change of gauge in
quantum mechanics is quite standard [1,2]. (We adopt the
terminology that the phrase "gauge transformation" implies the
so-called "gauge transformation of the second kind" [1].) This
quantum-mechanical procedure begins with a change in the
potentials employed to represent an electromagnetic field, and
then associates with these altered potentials a changed
interaction Hamiltonian and a particular phase transformation of
the wave function. Some practitioners presume the inverse: that
the phase transformation of the wave function will always imply
that a gauge transformation has been done. It is the aim of this
paper to show that this inverse procedure does not necessarily
produce a gauge transformation, and that significant
misinterpretations can occur thereby.

When a non-gauge-changing unitary transformation (a "phase
transformation") is presumed to actually produce a gauge
transformation, it may not have practical ill ‘consequences. In
some cases, it simply induces an identity transformation in the
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transition amplitude. The outcome 1is 1less benign when the
non-gauge phase transformation is interpreted as a gauge
transformation, and used to infer further physical conclusions.
For example, this has led to the concept that one particular gauge
is more fundamental than others. These difficulties are discussed
in Sec. 3 after a review of basic information in Sec. 2.

2. Formal Background

The approach taken here is that of semi-classical
electrodynamics. Quantization of the field is not necessary for
present  purposes. Both relativistic and  non-relativistic
formulations will be used; relativistic because matters are
clearer in that context, and non-relativistic because that is
where the difficulties have actually occurred. It is presumed
throughout that the fields and the gauge-transformation functions

are explicitly time dependent. - o

A gaug?l transformation of the electromagnetic four-vector
potential A" by the real, scalar generating function A |is
accomplished by

a4 o A = QK - gy (2.1)

or the non-relativistic equivalent

¢ » ¢° = ¢ - 8A/3(ct) (2.2)
253 =2+ W, (2.3)

where Au=(¢,3). This is accompanied in quantum mechanics by a
change in the phase of the wave function induced by the unitary
transformation

v > ¥ = vy, (2.4)

with
U = exp(ieA). (2.5)

When one wishes to change the gauge in which a transition
amplitude is expressed, it 1is necessary to know how the
Hamiltonian is transformed. It follows directly from the
Schrédinger equation that this transformed Hamiltonian operator is
given by

H° - ina/at = U (H - insset) U, (2.6)

or, equivalently, by [3;4]
B = vt -1t = vavt + iniv’, (2.7)
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where the dot on the U indicates the time derivative. The Dirac
analog of this Schrédinger result is instructively simple. From

the Dirac equation |
(i2-ek-m)¥ = O, (2.8)
one obtains

Uciz-ek-myu'vy = (iz-ef-m)¥ = o, (2.9)

where K = 1“Au, and Auc is given by Eq.(2.1).
The transition amplitude employed will be the generic form

(5-1),, = -(i/h) I dt (3 HY ), (2.10)

which is commonplace in scattering theory, but is useful also in
bound-state problems. It represents a physical situation in which
the transition-inducing electromagnetic field is not present at
asymptotic times, i.e., there is no field present at large
negative times when the initial state is prepared and at large
positive times when final measurement of the transition products
is made. The state ¢ is one with no electromagnetic field present.
Its Hamiltonian will be called H,. The state ¥ satisfies the
Schrédinger equation with full interaction. In other words,

(ina -H )% = 0, (2.11)
(iha -H)¥ = 0, (2.12)
H=H+H. (2.13)

For the usual problem in which an atomic or molecular potential V
is present at asymptotic times, as distinct from the
electromagnetic field whose application causes transitions, one
can state

H = (p’/2m)+v, H = (1/2m)(eB-A/c+ed-B/c+e’a® )red (2.14)

in an arbitrary gauge, where no stipulation has been made as to
how the field is to be represented by scalar or vector potentials,
or a combination of both. To be as straightforward as possible in
this formalism, it is required that the field is to be turned on
and off adiabatically, so that one can require the vector
potential at both positive and negative asymptotic times to be the
same (nominally zero). This restriction is known [3-8] to assure
that the same physical result will arise from the transition
amplitude in Eqg.(2.10) in different gauges, but with the use of
exactly the same non-interacting wave function &,, regardless of
the choice of gauge for H; and ¥,.

Finally, the relativistic transition amplitude analogous to
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Eq.(2.10) is stated [9]

(5-1)_ = =(i/h) J' d'x T exy, (2.15)

wvhere ¥ is the Dirac adjoint ¥=0'3°, and a static binding
potential is singled out, so that the non-interacting and
interacting Dirac equations are, respectively,

(i8-7°v-m)¥ = 0 (2.16)
(i8-ek-7°v-m)¥ = o, (2.17)

3. Statement of the Problem

Whereas there is really no ambiquity in the information
reviewed in Sec. 2, the way in which it is employed in the
literature is not uniform. A simple unifying concept which serves
to characterize the inconsistencies which arise is to note that
they all stem from the improper notion that a gauge-change-like
unitary transformation applied to the wave function is a guarantee
that a gauge change has actually occurred. . .

Possibly the simplest example of this problem occurred in
connection with the demonstration [10,11] that the substitution
¥=U® in Eq.(2.10) (for a particular choice of U) can give a good
approximation for certain classes of transitions in which dressing
by a 1low frequency field is present. The result of this
approximation is that Eq.(2.10) becomes

(5-1)_ = -(i/h) J dt (o, HUS ). (3.1)

This has, however, been characterized as a gauge transformation
(12] solely on the grounds of the presence of the unitary factor
U, even though there is no transformation at all of the
interaction Hamiltonian H;.

Another example is a procedure intended to change the gauge
in which a transition amplitude is expressed in a fashion which is
purported to be "manifestly gauge invariant". The device employed
is simply to inse;t a unit operator into the transition amplitude
in the form of U U. Then the U factors are attached to the wave
functions, and a gauge transformation is presumed to be
accomplished. (A clear example of this is in Ref.13.) Equation
(2.10) would then become

(§-1)_ = -(i/h) j ac (e HU'UY )
‘ i
= -(i/h) f dt ((U® ), (VHU' )(U¥ )). (3.2)

Since the wave functions now bear the unitary transformation
factors U as in Eq.(2.4), they are regarded by some authors as

being in a new gauge.
There are several defects with the above procedure. One is
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the fact that the non-interacting wave function ¢ is transformed
as well as the interacting wave function ¥. This fact has been
noted by some authors, and concluded to be necessary [13-18]. A
corollary of this procedure is that there then exists a preferred
gauge, since only in one gauge is it possible to have the
non-interacting wave function appear without its unitary
transformation factor. The preferred gauge normally selected is
the so-called "length gauge", or "EF" gauge, where the
dipole-approximation interaction Hamiltonian is H}=-e§- . For
example, the statement is made that [14] "... the %g tbook wave
functions can, in general, only be applied in the formalism
...", The presumed necessity to apply a field-dependent gauge
transformation factor to represent a non-interacting state in any
gauge other than the length gauge has been termed an oxymoron
[19].

Another problem with the procedure expressed in Eq.(3.2) is
that the interaction Hamiltonian is not properly stated. The true
gauge-transformed interaction Hamiltonian follows from Eq. (2.6) or
(2.7), taken together with Eq.(2.13). By contrast, the form

H' = UHIU* (3.3)

is simply a unitary (or phase) transformation of the operator H;.
It is not the gauge-transformed interaction Hamiltonian. The
actual gauge-transformed jinteraction Hamiltonian is given by

HE = va ' + (ay'-H,) + inw'. (3.4)

The clearest way to see the true meaning of Eq.(3.2) is to
employ the relativistic form given in Eq.(2.15). The lack of
second order differential operators in the Dirac equation and the
simple form ek for the interaction term makes the relativistic

form especially clear for formal purposes. The procedure analogous
to Eq.(3.2) employed in Eq. (2.15) gives

(s-1), = -(i/m) | d'x ¥ erv'vy,
= -(i/h) J' d'x (T% )ek(U¥,), (3.5)

since U always commutes with eX. Equation (3.5) shows plainly that
there is no gauge transformation at all. The interaction term
remains identically the same as the original, and does not
transform to the new gauge as would follow from Eq.(2.1).

The procedure in Eq.(3.5), as in Eq.(3.2), is simply a
unitary transformation within a fixed gauge.

4. Resolution of the Problem
_The resolution of the ambiguities discussed above is
straightforward. One simply states a transition amplitude in an

unspecified gauge, containing all four components of the
electromagnetic potential function, as given in, for example,
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Eq.(2.15). In a particular gauge, designated by the superscript
(a), this is

(S-1), = =(i/h) I d'x T en™u®. (4.1)

In gauge (b), it is
(§-1)_ = =(i/h) I d'x T ex® ¥ (4.2)

The non-interacting state &, is the same in both instances since
it is independent of the field. This is the type of transparent
gauge invariance that has also been given the name "manifest gauge
invariance" [19], although that description is risky, since
the same phrase means different things to different researchers. A
better name would be "strong gauge invariance”, since it so
strongly stresses the complete equivalence of all gauges.

There is no clear algebraic transformation that connects
Eq.(4.1) with (4.2). Nevertheless, they must be equivalent if all
gauges are equally valid. This has been shown by calculation of
practical examples [6,7] as well as by the demonstration [3] that
the formal difference between the expressions which are the
non-relativistic analogs of Egs.(4.1) and (4.2) has a null result.

The mis-identification of the simple phase transformation in
Eq.(3.2) or (3.4) as a gauge transformation follows from an
attempt to achieve algebraic identity ©between transition
amplitudes in different gauges. What is achieved instead is simply
a unitary transformation within a fixed gauge.

Another motivation for employing Eq. (3.3) as a
gauge-transformed interaction Hamiltonian in place of Eq. (3.4)
makes use of arguments [14,15] involving dependenée on the dipole
approximation and on the preferred use of the E-P interaction.
Such arguments are inherently risky. One cannot view as
fundamental a formalism which depends critically on an interaction
which cannot extend to very strong fields or to the presence of
significant magnetic influences.
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The concept of squeezing has so far been applied mainly to light, as is evidenced by numerous
research works on the subject of squeezed light. Since in quantum mechanics both light and the
simple harmonic oscillator are described within the same mathematical framework, there is of
course no difficulty in applying the concept to the simple harmonic oscillator as well. In fact,
theoretical development of squeezed states and squeezed light owes much to physical insights
one obtains as the analogy between light and the harmonic oscillator is exploited [1, 2]. There,
however, exist only a few publications [3, 4, 5] that deal directly with generation of squeezing
in a harmonic oscillator. Since the two quadrature operators for a simple harmonic oscillator
carry the physical meaning of position and momentum operators apart from constants, a squeezed
oscillator, i.e., a simple harmonic oscillator in a squeezed state, exhibits squeezing in actual position
or momentum. Thus, a squeezed oscillator once generated can play an important role in atomic
or molecular experiments that require precise initial determination of the position or momentum
of the particles involved.

In our previous work [5], it was shown that squeezing can be generated in a harmonic oscillator
by subjecting it to collisional interaction. The model chosen for this study is one-dimensional
collision between a helium atom, taken as a structureless particle, and a hydrogen molecule,
approximated as a simple harmonic oscillator. The harmonic oscillator was assumed to be prepared
in its ground state before the collision. Thus, o

[¥(t =0)>=10>, (1)

and the initial quadrature variances are given by

1
(AX))? = (AX,)? = T (2)
As the collision proceeds, the oscillator develops into a superposition state,
(1) >= 3 an(in >= 3 lan(t)]e* Ol > 3)

The quadrature variances at time t are then given by [6]
1 1
(A)(l)2 = =+ Zn|an|2 + = Z vn +2vn+ llanllan+2|cos(¢n+2 - ¢n)
4 - 2 -
— (3" VAt Tlonllantilcos(dasr = 8a)]", (4)
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and a similar expression for (AX3)?. Wodkiewicz et. al. [7] have shown that a superposition state
consisting of a finite number of eigenstates |n > can exhibit squeezing for appropriate values of
the magnitudes |a,| and phases ¢, of probability amplitudes, and thus there is a possibility of
squeezing in the collision state given by Eq.(3). Our calculations, as reported earlier [5], show
that there occurs a relatively strong squeezing near the time of minimum separation and a weak
squeezing altanately in position and momentum after the collision is over.

It should be noted that, in most of the collision studies in the past, attention was focused on
the magnitudes |a,| of the probability amplitudes as they yield the transition probabilities. For
our study of collision-induced squeezing, however, the question of how the phases develop in time
as the collision proceeds is also an important issue, because the variances (AX;)? and (AX;)?
depend not only on the magnitudes |a,| but also on the phases ¢,, as can be seen from Eq.(4).
Even if the magnitudes |a,| are fixed, the variances can take on different values for different phases
Pn.

In order to emphasize the importance of the phases, we show below that squeezing can be
achieved from a coherent state simply by changing the phases alone. Let us consider a harmonic
oscillator in a coherent state |a > at time t = 0. If we let the oscillator develop freely in time, its
state at time t is given by

(1) >=eRF/2 Y ‘%e"’“‘”‘ln >. (5)
n.

The variances (AX;)? and (AX;)? remain ; throughout. Let us now assume that the phases of
the coherent state are changed at time ¢ = 0 so that the oscillator develops in time according to

[¥(t) >= e-lelr2 Z %eiﬂne—iwtln > 6)
n.

As compared with the coherent state, Eq(5), the state represented by Eq.(6) has additional con-
stant phase factors 6,. Althogh this state is not identical with the coherent state, it has the
same Poissonian state distribution as the coherent state and may thus be called a “quasi-coherent
state”. It is our purpose to show that, with appropriate values of 8, the quasi-coherent state can
show squeezing in X, or X,. To illustrate this, let

0, if niseven,
bn = { ~1 ifnisodd. (M

The state represented by Eqs. (6) and (7) are a linear combination of even and odd coherent states
(8] with the relative phase between the even and odd states given by %. The variance (AX;)? for
this state can easily be computed using Eq.(4), and similarly (A X;)2. The result of the calculation
is '

(8X:)* = 7 + lof? = [of*sin®($ — wt) — |al?e™*" sin’($ — wr), (8)
(AX,)? = % + laf® = |af? cos?(¢ — wt) — |af*e~ 1" cos?(¢ — wt). (9)
The variances oscillate betv&éen Umazr and vp,,, where,
1 1 —dla
Upmar = 4_ + |a|2, Upmin = Z - |Ol26 4laf? (10)
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It is evident that the quasi-coherent state with the phases given by Eq.(7) exhibits squeezing

because Umin < 3.
The example presented above shows clearly that two states with different phases in general have

different degrees of squeezing, even if they have the same state distribution. This means that, even
if one considers collision processes that produce the same state distribution, the degree of squeezing
obtained during and after the collisions can be quite different, depending on how the phases ¢, of
the probability amplitudes develop in time as the collisions proceed. It is therefore evident that,
for a detailed study of collision-induced squeezing, further study on the time development of the
phases in collisions and its relation to collision parameters such as potential energy surfaces and

collision energy is needed.
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Abstract

In contradistinction to a widespread belief, Wigner’s theorem allows the construction
of true joint probabilities in phase space for distributions describing the object system as
well as for distributions depending on the measurement apparatus. The fundamental role
of Heisenberg’s uncertainty relations in Schrédinger form (including correlations) is pointed
out for these two possible interpretations of joint probability distributions. E.g., in order
that a multivariate normal probability distribution in phase space may correspond to a
Wigner distribution of a pure or 2 mixed state, it is necessary and sufficient that Heisenberg'’s
uncertainty relation in Schrodinger form should be satisfied.

1 Introduction

Joint measurements of conjugate variables ¢ and p are realized in many optical devices. This
implies that one can think in this domain of a representation of quantum mechanics by means of
joint probability distributions (j.p.d.) in the phase space of conjugate variables q and p [1]. This
is perhaps the most convenient way to a realistic underpinning of quantum mechanics. A major
advantage is that the incompatible variables g and p are c-numbers. The Wigner distribution
function, which is widely used in optics, is the simplest language for coherent and squeezed states
[2]. For these states the Wigner function is nonnegative. However, it is well known that the Wigner
distribution cannot be considered as a true (nonnegative) probability distribution in general [3].
The aim of this paper is twofold: in the first part (sections 2 and 3) we present an analysis
of the central question to comsider phase space representations of quantum mechanics as irue
(nonnegative) probability distributions [4, 5] ; in the second part (sections 4 and 5) we emphasize
the fundamental role of Heisenberg’s uncertainty relations in Schrédinger form for Gaussian Wigner
distributions and compare this with j.p.d. depending on the measurement arrangement (positive
operator valued measures).

2 Wigner’s theorem

On account of the commutation relations between the operators § and $, there is mo unique
operator corresponding to the monomial ¢"p™. As a consequence there is no unique construction
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of the j.p.d.. In general, a j.p.d. is completely determined by a given correspondence rule.
Notwithstanding this arbitrareness, the existence of true probabilities in phase space is severely
restricted by ngner s theorem [3], which considers the following five requirements:

(1) The j.p.d. is the mean value of an hermitian operator K(q,p) depending on the c-numbers
g and p: f(g,p) = tr[K (9,P)A]-

(2) The j.p.d._is a linear functional of the density matrix (sesquilinear in the wavefunction):
this means that K(g,p) is independent of 5 .

(3) The j.p.d. is a true probability function: flg,p) 2 0.

(4) When integrating over momentum space, the marginal distributions coincide with the
proper quantummechanical probabilities in ¢: [ f(g,p)dp=<gq |4 |gq>.

(5) When integrating over position, the marginal distributions coincide with the proper quan-
tummechanical probabilities in p: [ f(g,p)dg=<p|5|p >.

Theorem 1 The five requirements (1 )-(5) are incompatible.

The requirement (2) is not explicitely present in the original version of Wigner’s theorem; the
necessity of this requirement was emphasized by Migiir-Schlachter [6], who observed that in the
absence of the arbitrary restriction (2) Wigner’s theorem cannot be realized. In the stronger
version of Kruszynski and de Muynck [7] the requirement on one marginal distribution suffices.

3 Realisation of positive phase space distributions

For our purpose, it is sufficient to consider two different interpretations of j.p.d. as functionals of
the density matrix.

(1) The j.p.d. f(g,p) is interpreted as the probablhty that the variables ¢ and p have certain
values, the variable considered as a property possessed by the object system. In this case, two
possibilities are left open for the construction of true j.p.d.:

(1.1) f(q,p) is a linear functional of p.

In this case the requirements (1)-(5) are only compatible with a restricted class of functions.
E.g. for the Weyl correspondence rule, the restricted class of functions are Gaussons (see section 4).
The Wigner distribution cannot be considered as a true probability distribution in general, because
e.g. it takes necessarily negative values for pure states that are not Gaussons. However, one
can easily construct positive non-Gaussian Wigner j.p.d. corresponding to mized states. For
a representation of quantum mechanics by means of true Wigner j.p.d. one can add the new
requirement that only nonnegative j.p.d. are physical states . This means e.g. that a one photon
state is represented by a mixed state [10]. This idea is made plausible by the experimental fact
that it is impossible to prepare a pure state with 100 % efficiency.

(1.2) f(q,p) is a nonlinear functional of .

J.p.d. which are a nonlinear functional of the density matrix are not restricted by Wigner’s
theorem. The j.p.d. which is the product of the proper quantum mechanical marginal distributions
is a trivial example: f(g,p) =< gq|p|g><p|p|p>. Non-trivial examples with correlations
exist also in the literature [11].In this case the j.p.d. is a multilinear functional of the density
matrix. We have considered a complete analysis of true distributions which are quadratic functional
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of the density matrix [5]. This results in a new concept of j.p.d. which is based on a consistent
phase space interpretation of the energy eigenstates of the wave function.

(2) The j.p.d. f(g,p) is not function of the object system alone, but may also depend on the
measurement arrangement of two incompatible observables Q and P. The measurements mutually
influence each other in such a way that the singly measured quantum probability functions cannot
be reproduced from the measurement results. In this case it is no longer desirable that the
marginal probability distributions equal the single measured ones, hence Wigner’s theorem does
not restrict this class of j.p.d. and f(g,p) may be a linear function of the density matrix. The
optimal stochastic phase-space representations introduced by Prugovedki [12] are an example of
this class. In general the distributions of class (2) can be considered in the framework of positive
operator valued measures [13].

4 Heisenberg’s uncertainty relation in Schrodinger form
and coherent and squeezed Wigner distributions

We consider case (1.1) for the Weyl correspondence rule. In this case the construction of true
j.p.d. for pure states is restricted by the remarkable and important theorem which was proven by
Hudson [8] for one-dimensional systems and generalized by Soto and Claverie [9] for systems with
an arbitrary number of degrees of freedom.

Theorem 2 The necessary and sufficient condition for the Wigner distribution function of a pure
state to be nonnegative is that the corresponding wave function < gl > is the ezponential of a
quadratic form.

As a consequence the wave function represents a coherent or a squeezed state and the j.p.d. is
a bivariate or a multivariate normal (Gaussian) distribution in phase space. Conversely, in two--
dimensional phase space of the conjugate random variables g and p the most general normalised
bivariate normal probability distribution with mean values § and § can be put in the standard
form

fa) = oo lola- 0 - 2ousla- D= D+ o =71}, ()

where o, and 0, and o, represent respectively the variances and the covariance o, = E[(g — §)?],
etc.; E denotes the expectation value and A is the determinant of the covariance matrix: A =
0405 — 05, > 0. Schrodinger derived a more general and stronger form of Heisenberg’s uncertainty
relation including the correlation og,:

040p — Oy’ 2 B?/4, (2)

which we call “Heisenberg’s uncertainty relation in Schrodinger form”. It is easy to derive and
to diagonalise the corresponding density matrix. f(g,p) may now represent a pure or a mixed
state. The eigenfunctions < g|t > are oscillator eigenfunctions functions multiplied by a common
g-dependent phase factor which is characteristic for the correlation. We can show explicitely that
there is a close connection between a Gaussian distribution in phase space, quadratic Hamiltonians
and temperature dependent oscillator states. This implies a connection between physical and
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statistical parameters. The eigenvalues of the corresponding density matrix are (1 — z)z" with
z=(A-%/2)/(A+h/2), which leads to a sufficient condition for a bivariate normal probability
distribution to be a quantum state:

Theorem 3 In order that a bivariate normal probability distribution in phase space with variances
04, 0p and covariance oo, may correspond to a Wigner distribution of a pure or a mized state, it is
necessary and sufficient that Heisenberg's uncertainty relation in Schrédinger form 040, — 0y o >
h?/4 should be satisfied [{, 14].

It is very remarkable that the Schrodinger form of Heisenberg'’s uncertainty relation, which is a
necessary condition to be fulfilled for every Wigner distribution function, is also a sufficient condi-
tion in the case of a bivariate normal probability distribution. Indeed, to be a Wigner distribution
function, f(g,p) must satisfy an infinite set of KLM [15] or equivalent conditions in general, but
for the two-dimensional Gaussian distribution the infinite set reduces to one simple necessary and
sufficient physical condition. In this respect, the uncertainty relation in Schrédinger form is more
fundamental than Heisenberg’s relation in the usual, less stronger form 0,0, 2 #?/4. Moreover,
the Schrédinger form is invariant for linear canonical transformations (in general Sp(2n, R) in-
variant transformations), while the usual form is not. Finally, for quadratic Hamiltonians, which
are closely related to the Gaussian Wigner distribution, the Schrédinger form remains tnvariant
during the motion if the variances and the covariance are dependent on time. Indeed, in this case
the quantum Liouville equation is equivalent to the classical Liouville equation and therefore §,
$,0,,0p and 0, have the same time dependence as in the classical case. These are further reasons
why the uncertainty relation in Schrodinger form is more relevant than Heisenberg’s relation in
the usual form.

For systems with an arbitrary number of degrees of freedom the strong form of Heisenberg’s
uncertainty relation is derived from the inequality tr(a'pa) > 0 where the vector a is given by
a=A(§—q)+ B(p— p), A and B being arbitrary matrices, and which takes the form:

t —
|| e M| 5 |20 ®
Therefore Heisenberg’s uncertainty relation in Schrédinger form takes now the matrix form:
o—1hf/2 2 0. (4)
where o is the covariance matrix | Jve Je» l and 8 thg fundamental symplectic matrix | ? '

Theorem 4 The necessary and sufficient conditions for a Gaussian phase space function to be a
Wigner distribution is that the covariance matriz o satisfies Heisenberg 's uncertainty relation in
Schrodinger form: o —1h8/2 20 [4].

Analogous remarks as for the bivariate j.p.d. are valid for the multivariate j.p.d., the eq. 4 is
now Sp(2n, R) invariant. The theorem entails a considerable simplification with respect to the
theorem of Simon, Sudarshan and Mukanda [17], where Sp(2n, R) invariant powers of Bo~! satisfy
n complicated inequalities. The difference between a pure and a mixed state is given by a theorem

of Littlejohn [16]: - -

Theorem 5 The nécessary and sufficient condition for a Gaussian Wigner distribution to be a
pure state is that the matriz 20 /h is a symplectic matriz: oo = (R?*/4)B.

In two dimensions the matrix relation reduces to 0,0, — 0q* = A/4.
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5 Heisenberg’s uncertainty relation in Schrodinger form
for j.p.d. depending on the measurement arrangement

It was argued in section 3 that the construction of j.p.d. of class (2) is not restricted by Wigner’s
theorem. Requiring Galilei invariance, linearity and positivity for any density matrix describing
the object system, we have for the most general form of the j.p.d.:

f(a, p) = h—ntr(b;,ﬁman.pﬁobj) (5)

where fmeas and job; are the density matrices describing exhaustively the measurement apparatus
and the object system and Dg, represents the displacement operator. If both pmess aDd pob; aTE

pure states then f(g, p) reduces to the transition probability f(g,p) = A™"tr(¥meas, 15, s¥obj). The
marginal distributions are always given by the convolution of two true probability densities:

/f(q,p)dp=<q|ﬁm.Iq>*<q|ﬁoa,'|q>, (6)
/f(q,p)dq=<plﬁm.|p>*<plﬁoajlp>, (7

which can be seen as accuracy calibrations given by the confidence functions < ¢ | Pmeas | § >
and < P | Pmess | P >. The couple ¢, < ¢ | Ameas | g > together with p, < P | Ameas | P > can also be
interpreted as a fuzzy sample point in phase space [12]. Remark also that, for these j.p.d. the
ordening of operators is equivalent with a measuring procedure. One can also write the j.p.d. as
a convolution of two Wigner distributions:

£(2,0) = fraeas(a, ) * fobi (2, P)s (8)

the first one representing the measurement procedure and the second one describing the object sys-
tem. This “smoothing” or “coarse graining” of the Wigner distribution eleminates fast oscillations
in & and gives therefore a better representation in the classical limit [18]. Another consequence
of the last formula is that the covariance matrix o is the sum of the covariance matrix oq; of the
object system and the Omeas of the measurement procedure. Hence we obtain the “operational”
uncertainty relation

o—1ihf 2 0. (9)
which reduces in one dimension to 405 — 0¢ > #2. This operational uncertainty relation is
in accordance with the experimental uncertainty relation (Aq)es(Ap)es ~ [19). Comparing
this with the uncertainty relations for the j.p.d. of the preceding section, we observe that the
inequalities are the same, except for the essential difference that % replaced by 2k, expressing the
presence of extra noise due to the measurement procedure.
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Abstract
The possibility of formation of squessed states of gluoa felds in quantum chromodynamics
due to noalinear nonperturbative selfinteraction during jet evolution in the process of ete™
annihilstion into hadroas, which are amalogous 1o the quantum foton squeesed states in
quaatem electrodynamics is demonstrated sad the squeesing parameters are calculated.

1 Evolution equation for gluon field

The gluon part of the quantum chromodynamics Hamiltonian has the form (1]
By = B0+ B = [(HEE 4 BB - BugCuridit

}0B.Cucks x 4, + 3¢ (Cail) + 1 (3Cuchs x A)}dz

where E. = -eAﬂ - O.A..,g =V x L,L-mtor potential of gluon field, C, . —structure
constants of the SU(3) , a,b,¢,=1,...,8 are colour indices; 4, 7, k, [—indices of 3-vectors.

The field of gluons appears in the form of gluon jet or cascade, which is produced by the
quark with large iransfered momentum. Due to the cubic and quadratic nonlinearities in (1)
bremstrahlung gluons divide and at the end of perturbative cascade we have a jet of gluons with
approximately equal energies and momenta [3].

At the end of cascade multiplicity distribution of gluons is close to negative binomial distribu-
tion (3, 4] which can be considered as a set of Poisson (coberent) distributions.

The importance of nonperturbative hadronisation stage is connected with confinement, sub-
poisson multiplicity distributions at this stage [5, 6], connection with intermittency [7], pairing
of partons during colour loosing, nonlinearities of (1) hint on the possibilities of squeesed gluon
states. '

Let us take for simplicity that all gluons in jet have equal energies and momenta. Choose such
the system of coordinates that has axe z, coinciding with the direction of gluon momentum. Then
in the momentum representation the operator of gluon selfinteraction takes the form

V= %g’C.kC.a [(z - %) ARY 4+ (z- -'E}) ARV + A,,“",,] . (2)

(1)
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AN = AN AR MM+ AP KA AL+ AP ALY 4 (cc), 3)

where A(A{) are annihilation (production) operators of gluons with b—colour and i—vector
component, ko and mq are gluon energy and mass: k3 — k? = m3.
Evolution equation for gluon operator with indices a and k&

1, A} = (A}, H] (4)

then takes the form
B AL = hAS+ LA + f (5

The function f;, f2, f do not contain explicitly A and AF*, f = f1* [9].

2 Squeezing of the gluon fleld in jet

Let us solve the equation (5) for small time At << 1/E,E = \/fl’ — |f2]3. Then the solution of

(5), is written in the matrix form
a(0) =1 (% B GEE)+:(4) ®)

(D)= [T (J 14
(D) + 1Tl (fr 2)1(S0) )

Let us take at some moment ¢, = 0 the conditions: f = 0,3 f; = 0, and that f, and f; vary slowly.
Then the solution takes the form

.|

™

£(t) = A3(0) — $43(0) /18t — iAT*(0) f2A¢. (8)

This expression coincides with the expression for ideal squeesed state (8]
AL = Afchr + X Al shr (9)
chr=1-ifit, shr=fi, X=-i (10)

where r and 6 are squeesing parameters. Thus the selfsqueesing is possible for the gluon field with
fixed colour and Lorents component.

In quantum optics such states are named as pure quantum stated and operators z, = (A-
A*)/2 and 2; = (a = A ~ A*)/2 can have average fluctuations smaller then 1/4.
3 Evolution of gluon multiplicity distribution in jet

Take vector of state |7y, ns,...,Na >there na— the number of gluons with definite indices s and
a. The operator of full gluon number N acts on the vector as

Riny, g, na >= (m 415 +... + na)lny, g, ... ma > (11)
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It is clear that any part of H,, acts on the vector as
|[New >= A”A;-“A:A,‘Inl,m,...,n. >N, M, Nee1, M43y - oy Nty Tymly oo -, N0 > (12)
It does not change the l;umber of particle
NiNew>=(m+n+... +na)|New > (13)

and then

[N,H]=0. (14)

Thus the total number of gluon is jet under made conditions (k = const, ko = const) does not
change with the time and it is not difficult to see that gluon multiplicity distribution does not
change with the time.

It can be also shown that the value squeesing shr for every mode is limited [9]. Foton mmlti-
plicity of squeesing states distributions have been used earlier for phenomenological description
of some properties of hadron multiplicity distribution [10, 11].

Here we obtain for model gluon jet that the squeesed states of colour gluon field can appear
due selfinteraction and nonperturbative mechanism of gluon selfinteraction and can be particularly
important at nonperturbative stage of jet evolution.

Due to nonperturbativeness, pairing of gluon and subpoisson multiphicity distributions squees-
ing states can be responsible partly for hadronisation of colour partons (confinment) and inter-
mittency (fractal dimension) phenomenon in multiparticle processes.
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EXACT AND QUAST -CLASSTCAL DENSITY MATRIX AND WIGNER
FUNCTIONS FOR A PARTICLE IN THE BOX AND HALF SPACE.

E. A. AKHUNDOVA
Institute orf Physics Academy of Science of
Azerbeai jan, Bsku. 370143. Prospect Azizbekova, 32

V. V..DODONCOV
P.N.Lebedev Physical Institute, Moscow. 117924. Leninsky
Prospect 53. USSR

V.I.MAN"KO
P.N. Lebedev Physicsal Institute. Moscow, 117S24.
~ Leninsky Prospect 53. USSR.

The exact expressions for density matrix and Wigner
functions of quantum Systems are known only in special ceses
and ,practicelly. all of them @and their references are
described in [1-3]. Correspondending Hamiltonians are
quadratic rforms of Euclidesn coordinstes end momenta. In
this paper we consider the problem o- one-dimensional free
particle movement in the bounded region G < x < a (including
the case a= »). For this problem the solutions of Schredinger
equation are well known:

vo=(2-8)1 %sin(anx-a). E =(ann)°s (2me®). n=1.2.3.... (1)
Then the equilibrium density metrix cesn be calculated Dby
formui a ‘

PIX. X" 3)=) vy (X)W (x') exp(-AEp) (2)

Indroducing the expression (1) to (2) end meding some
simple transrormsetions we obtain two series. each of which
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is, precticalliy the derinition of teta-runction [4]

2o}

05(2|7)=1+2 Ztl:os (2nn2 )exp (i ntn®) (2)
- n¢

AS result we have the expression

. .2 . .2
-X" w3 ’ h
p(x-X" . A)= & @q[x x| 1z g,]- @3["*" AL (4)
- 2a 2ma”™ 28 2ma

The replacement s=it-h  transrorms the expression (4) into
the propogator of Schredinger eguation for the particlie in &
box obtained earlier by various;pethods in £3,5.71.

Evidently in the limit 5-8° - » (i.e. low tempersture
and small size or a box) the density matrix can be good
approxXimated oniy by the rirst order term or the expansion
series (2). The gquestion is in obtaining from the exact (but
not very obvious) rormula (4) the asYthotics of the density
metrix in quesi - classical limit p-8“ (high temperature and
wide box).

' The qualitive behaviour of the probability density
p({X.X,73) in this case is clear from physical consideration.
It must be almoust constant at all points inside the box
except very small region near the wall correspondinc toc de
Brogie wave length. In this region the density matrix must
leagds to zero. However, it is interesting to obtain this
result from the formula (4). More over we would like to know
the character of the derlexion unirorm distribution inside
the box caused by quantum corrections. This problem can be
solved using the equality [4] for teta-runction

2

05 (z|7)= (i7)Y Poxp (-niz v )0g (-2 |-17) (5)

Due to the ract that in our case the parameter - 1is pure
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complex and restricting by the rirst term of expansion
series(3) of the function ®3(—2/T1-1/7) when -0 we obtain
the rfollowing formula describing the aquasi-classical
behaviour of the density matrix

2 1’2 2 ) 2 a
e (X, X’ .3)=(m 2n3h") exp [-m(x-%' )~ 2nnr] (1+

~ - 2 21 [ T SN 21 \_ r R Zf.n,\ 2 -
« 2exp [-ma® pn®ich [-2m(x-x' ) sr%l)-exp [-m(X+x' )" aan™] (1~

[ ] (o] (]
+ 2exp [-ma“-3h“Ich [-2m(x+X')/ﬁh“])} (6)

This rormula is correct in the region |x * X'|=s & (i.e. at
the lert half of the box ). For the pcinis outside of this
region one have to use the properties folloing from (3)
and (4)
e (X, X' )=, (X', X). p{28-X,8-X")=c(X.X")
For the diaadonal elements of probability density we have
rollowing expression

2 1,2 2 2 r 2 21
e (X, X', 3)=(m-2nrn"™) 1-exp [ -2mx“- nArcl+2exp [-ma® psh1 [1-

o

n ) ~ [n]
- exp [-2mx°-ph¥lch [ 4mx-3h“] }. X288, me“ p3he > 1 (8)

The rirst two terms in rigure brackets descrioe
the probability density of particle position in the infinite
half space right from the wall placed to the point X=0. The
other terms give corrections caused by the-presence of the
second wall. Note. that this corrections don’t oscillate as
it can be seemed from rformuias (3) and (4).
In the centre or the box the density matiix i§ equai to
o(9-2,8-2,5)=coNsL <1-2 exp{-ma“ 25h")

and the half space case on the same distance from the
coordinate centre we have an analogous expression but
without two in front of exponent. The exact expression Of
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rrom (4) one can obtained the Wigner funciLion

FAA

W(p.q,ﬁ)=jp(q+f/2.q-f/2,ﬁ) exp (-1p£-h) g¢ (1%

Taking into consideration that the integration resion is
bounded by the interval -2 < ¢ = 2g
0 =qg=x 82 we have [7]

W (Paq )= — (2Pyh) [y —71"h ﬁz]d
p.g.n)= — |cos (2PY-h) ©5| — y-
a l 3 al 2ma”
g} inh Bz
-(h/ap)Sin(qu/h)@g[— — } (12)
g Zma”

but when a2 < g < a one have to use the eguality
V(p.q.n) = W(p.a-q.R)
The Wigner ror a rree particle in half sSpace was exactly
expressed by the error-runction for the rfirst time in [8]
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(3]
(4]
(5]
(6]
(7]
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NEW SQUEEZED LANDAU STATES

C. Aragone
Departamento de Fisica, Univ. S. Bolivar
Apartado 89000, Caracas 1080A

Abstract

We introduce a new set of squeezed sates through the coupled two-mode squeezed opera-
tor. It is shown their behaviour is simpler than the correlated coherent states introduced by
Dodonov, Kurmyshev and Man'ko in order to quantum mechanically describe the Landau
system, i.e. a planar charged particle in a uniform magnetnc field. We compare results for
both sets of squecezed states.

A planar charged particle moving in a uniforn magnetic field is a very interesting quantum
mechanical system. It is not trivial, needs the two spatial dimensions to describe it, it has some
reminiscence of the two dimensional oscillator, but requires in addition the peculiar presence of
the angular momentum operator which play a role as important as the hamiltonian. As recently
it has been pointed out [1], the system has an Osc(1) dynamical degeneracy group. It seemed to
us the system has a physics rich enough and mathematically particularly well understood in terms
of the holomorphic (and antiholomorphic) coordinates that deserved to be revisited.

A planar particle of charge e, mass m, moving in a uniform magnetic field B = Bk can be
described by the classical first order action

S=<7 - T -2m)" [P -2'eBiT)>E<F T-H>. (1)

T is the two-dimensional vector position of e, 7 its canonical momenta (which in the presence

of the vector potential A = 2- !B(i7") does not coincide with m7), and the linear operator i
indicates a positive /2 rotation, i.e. (i7'); = —¢;;v;. We choose B such that eBE mw is always

positive, without losing generality.
The Landau system &, =2 {7, 7', H, A= - (#7") - P’} is quantized by imposing

[T"',Pj] = 'hé.'l 1'.7 = (1=2) (2)

As shown in ref. [l] it is convenient to introduce two sets of additional, momentum-like
variables
TEDP -27'mw(iT), BT + 27 'mw(iT). (3)
7

T is the q-operator representing the observable m 7. In terms of these quantities the hamiltonian

and the angular momentum take the form

H= (2m)"{$’2 +4 T 4 mwA} = (2m)"?2, (4)
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A=(=i7) 7 = mo) (7 - D). (5)

Observe the interesting chiral aspect of A in terms of T and W.
It is inmediate to notice that w; commutes with =;,

[wiy ;] = 0. (6)

Consequently T’ and A commute with H. Since
[A,wi] = —ihegw; = AGD); (7a)
[wi,w;] = —thmwe;;. (7b)

we see that {1, W, A} constitute a dynamical symmetric group (which will be easily recognized,
when represented by its holomorphic components w,, wy to be Osc (1)), i.e. commutes with H.

It is convenient to introduce holomorphic dimensionless variables z,%, p., ps, 7s, ¥z, ws,wr to
analyze the system,

2227 'mw) P (z +iy),  pe = (2hmw)'(p; —ip,) = —id, +c.c. (8)

The two momentum-like set of variables take the form

T, =p: + -4z |, mp=pr-2"Y4z (9ab)
wy=p, —274F , wp=ps+27liz (10ab)
while If and A become
H = hw{p.pr + 47127 + 271 A} Shwh, (11)
A = ik{Zps - 2p,} Eh) = h[Z0F — 20,]. (12)

Ileinsenberg commutation relations eqs. (2) change to
[2,p:) =i =[z,7) = [z,w:] +ecc.. (13)
The two main physical observables k, A have a very simple structure
h=mrp+ 2710, + 27, A= —wrw: S0y — g (14ab)
where 77, w;, ¥;,wr can be regarded as two sets of decoupled annihilation and creation operators
(75, 7] = 1 = [wiwsl, (15)

since [w, 3, 7, 3] = 0. We emphasize the fundamental role of the both k, A(H, A) in determining the
two-mode quantum structure of the system, The energy degeneracy is broken by the presence of
n,, the second fundamental quantum number. These two series of discretes numbers will become
the origin of the two couplex parameters labelling the coherent Landau states dicovered long time
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ago [2] by Mal’kin and Man’ko. (Incidentally our 77 coincides with a of ref. [3] and our w, equals
—iag. To introduce coherent Landau states we introduce the state 0,0 >= 1o

Yoo(2Z) =r-tet7, (16)

Yoo belongs to the ground subspace, i.e. 75|0,0 >= 0 and is unitary (using the natural measure
9-'idzd% = dzdy. The ground subspace is determined by the orthonormal set o, = (p!)~'/?
wf0,0 >=|0,p >

0,p >= (")~} (i2)?(0,0 > . (17)

Each level-n energy eigenspacc has the discrete orthonormal basis
¥np = (n) 3 (p)) " x0w20,0 > (18)

Equations (14) tell us Hpnp = hw(n + 27" )¢np and Atpny = h(n — p).
We define the coherent Landau states [2] by

|w,s > e Vit 0 > (19a)

w,s € ¢. They constitute an over complete unitary system of the Hilbert space {¥np,nip €
0,1,---} in the usual sense (for coherent states)

< wisy|wasy >= e-—:}In-wxl’—ln-ul’+i|wzllwnIlin(w:-w)+t'lszllhIlin(és-éa) (19b)

w = |wle, s = |s]e’®.
They have three basic properties: i. They are 75 eigenstates with eigenvalue w, ii. they also
are eigenstates of w, with proper value s

Tslws >=wlw, 8> , w,|ws >=s|ws >, (20)

and iii. they propagate remaining in the family. If one starts on |[ws > leaving the system to
evolve, at time ¢t & will be described by

e~ Mt ws >= [we™™' s > . (21)

Eqs. (20) suggest a way to compute q-mechanical expected values for physical observables
F(p,P,2,%). Onc has to transform them to their representation in terms of the new variables
(v,7,w,@), then normal ordering in both types of variables and finally taking into account egs.
(20).

In this way we obtain:

< z >cr=< ws|z|ws >=< ws|(iry — iwg)|w,s >=i(w - 3) (22a)

<2?>c=—-(w-3)?, <2Z>=(w-3)(W-3s)+1 (22b, c)

plus their respective complex (hermitian) conjugates. We also obtain

<psdor=2"'< M tw, >a=2"(W+s) +ec (23a)
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<pi>cr=4'<(mtw)?>=4" (W+3)? +he, (23b)

< pepr >oL=4"1 + 47w + 3)(W + 5) (23¢)
<h>cr=<wslhlws >=wW + 271 | <A >c = wW — 33, (244, b)
< h? >oL= (WW+ 2_1)2 +wwW , < A2 ScL=< A >Z’JL +ww + §3. (25a,b)

Recalling definitions (8) relating 2,7 and real dimensionless variables z,y we can calculate
physical uncertanties, which are defined for canonical sets of variables in terms of holomorphic
variances 8z, 827 =< 2T > — < z >< 7 >, Ap,, Ap,p;. they turn out to be

(Az)¢, =471 (A2)g, +47H(AT)E + 27 (A2Z)cy = 271 = (Ay)Ep, (Azy)cL = 0. (26abe)
In a similar way, we find for the physical mbmenta

(Ap:e)er = 27" = (Apepy)er = 0. (27abe)
Consequently both uncertanties attain lowest bound

(Bz)cL(Bp:)er =271 = (Ay)eL(Ap,)ot. (28)

Coherent Landau states are minimun uncertanty states (MUS).

Squeezing can be now analysed, since the standard procedure to consider this type of states
involves the squeezing of associated coherents states. Complexive decoupled squeezed Landau
states have been introduced in ref. (3], where they have been called correlated coherent states.

Since squeezing is not that intuitive we face in principle four different types of squeezing:
partial squeezing in 73 My pa.rha,l squeezing in w,ws or full, complexive squeezing in both sets of
variables.

The complexive squeezing might be either decoupled or coupled in both set of variables. One
mnght think that it could be enough to squeeze just in the dyna.mlcal constituents of the hamilto-
nian mzr, in order to obtain physwaﬂy;:[;piealmg results. This [ primary ty;;erc;f “squeezing” can
be shown to lead to states which are irrelevant, since they are neither minimun uncertainty states
nor the variances of any canonical variable can tend to zero.

We are obliged to turn our interest to more radical way of squeezing. As we said above, we
must try complexive squeezing, i.e. to introduce squeeze operators which squeeze both type of
quanta, the = and the w-ones.

Let us first consider what we call “decoupled” squeezing, as it has been done in ref. [3]. The
squeezing operator is defined as

S(@1,2) = edsiri- il 1 < 57(¢,)5%(qn). (29)
We consider the squeezed states

staQIaq2 > E’S(qlqu)'w’s >. (30)

where both w and s are distorted.
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Both the r and w variables transform non trivially here,

(75)q 7—'_’5; 13Sq = mzchr + e ghry, (31)

(W) 2 Shw: S, = wichry + e shraws.  +hec. . (32)

The squcezed transformed of the Heinserberg canonical variable z z,,,, =S} 25;,,, becomes
in the present case

29100 = t(mzchry + e ghr i, — wychry — e"‘”’shr;w,). (33)
The complexive squeezed expectation values of z and p, are therefore
<220a=<Zup 2CL= i["ﬂn (w) - 3%(3)]v (34a)

< P: >00=< (P:)an >cL= 2_‘[3%(“’) + 3, (3)], (34b)

where subindex CL indicates the coherent Landau state |w,s > and s,(u)=chru + e¥“shri.
Quadratic complexive squcezed expectation values become

< 22> 0= =[5, (W) = 34, (3))? — shrichrie¥™t — shrychrie™ %2 (35a)

< 272 >00=< % >00u< 2 Dqae +chrl + shrl, (35b)

<P >a= 471 (F,, (W) + 85,(8))? + 47 shrichrie™ + 47 shrychre ¥, (36a)
< PPt Sae= 47 B (W) + 34, (3)][84, (W) + 5o, (8)]4 ™ ch?ry + 47 sh?ry. (36)

Irom this expressions for the holomorphic variables we can evaluate physical uncertanties to
see how they behave for complexive decoupled squeezing. They are

(Ap,): .. = (Az)?, = 27'chri(chry — shricos2p,) + 27 'chry(chr; — shrycos2p,) — 271, (37)

Nnq 192

(Ay) = (Ap,):m = 27 chri(chry + shricos2p,) + 27 chra(chr, + shracos2p;) — 271, (38)

Nnq

For ¢, =0=¢, Az and Ap, are squeezed since:

(Apy)2 = (Az)? = 4'71e'7" +47 e 0% | rrp = 00 (39)

w1=0=y3 w1=0=¢2

while, of course Ap; and Ay incrcase according to eq. (38). The partial uncertanties get closer
to their lowest bound,

(Ay):m = (Ap’-‘):ml‘, =87'[1 + chry(ry — )] = (Ay):m = (APV):m

(40)
1=0=¢2 p1=0=yy

This result indicates that physical squeezing, in the sense that the squeezed states are also
minimun uncertanty states, is obtained just for r; = r;. Complexive decoupled squeezing leads
to physical squecezing modes, but the two independent “a priori” parameters ¢; and g; have to
coincide.

A nicer solution to finding squeezed states of &, arises by considering the fact that we have
two modes in the system. TFor this situation a more natural squeezed operator can be defined,
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similarly to what has been done for the two photon case in ref. [4]. The “coupled” squeezing
operator we postulate is given by
Sq-ge*q,'lw?—*?zrlwl. (41)
It naturally depends upon only one parameter. It is straighforward to show that the squeezed
values of 77 and w, respectively are

S¥nsS, = r;ch% + e““’sh%w,—, (42)
Stw,S, = u,ch% + e’i’shgr,. (43)

" As expected this type of squeezing makes 7-variables to have w-components and viceversa.
The new associates squeezed states are defined by

|ws,g > = S,lw,s > (44)

where S, has been introduced in eq. (41), It is inmediate to perform in this case similar calculations
to what has already been done for the previous case. Results turn out to be mathematically simpler
and physically interesting. We get

< z2>,=<z, >cL= H(W —3)ch% + ish%(s’e"" — we™ %), (45)

<p:>=2"Y W+ s)ch-;; + 2"3h%(Wc”“’ + se”1¥), (46)

In addition one finds that (A,)? = (4,,)? = 0. Finally the variances of the canonical variables
attain the respective forms.

(Az)? = 47"€e"(1 - cos2yp) + 47'e7"(1 + cos2p) = (Apy)3, (47a)

(Ap:)? = 47" (1 + cos2p) + 47'e™"(1 — cos2¢) = (Ay)3, (47b)
Both uncertanties coincide, their value being

(Az)}(Ap:): = (Ay)X(apy); = 47 (chr? = shricos®2yp). (48)

For ¢ = kn /2 we obtain squeezing and minimun uncertainty.

In conclusion we feel these coupled squeezed states (44) are the natural ones for introducing
squeezing in the Landau system. We have shown they behave in a simpler way then those defined
in ref. (3] while they also lead to physical squeezing.
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Abstract

The conception of quantum chaos is described in some detail. The most striking feature
of this novel phenomenon is in that all the properties of classical dynamical chaos persist
here but, typically, on the finite and different time scales only. The ultimate origin of such a =
universal quantum stability is in the fundamental uncertainty principle which makes discrete
the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of -
the ergodic theory, as 2 part of the general theory of dynamical systems, is briefly discussed.

1 Introduction

The main purpose of this talk is to explain new physical ideas in the so-called gquantum chaos
which'since recently attracts ever. growing interest of many researchers [1-5, 10). In appendix
I also briefly discuss the concept of coherent/squeezed states in nonlinear, particularly, chaotic
systems in a more close relation to the topic of this Workshop.

The recent breakthrough in understanding of the quantum chaos has been achieved, partic-
ularly, due to a new philosophy accepted, explicitly or more often implicitly, in most studies of
quantum chaos. Namely, the whole physical problem of quantum dynamics was separated into
two different parts:

[y

o The proper quantum dynamics as described by a specific dynamical variable, the wavefunc-
tion ¥(t), and by some deterministic equation, for example the Schrodinger equation. This _
part naturally belongs to the general theory of dynamical systems and is essentially mathe- '
matical; the problem is well-posed and this allows for extensive studies.

» The gquantum measurement including the registration of the result and, hence, the collapse

_ of the ¥ function. This part still remains very vague to the extent that there is no common
agreement even on the question whether this is a real physical problem or an ill-posed one
so that the Copenhagen interpretation of (or convention in) quantum mechanics answers all
the admissible questions. In any event, there exists as yet no dynamical description of the
quantumn measurement including the ¥ collapse.
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In this way one can single out a very difficult problem of the fundamental randomness in quantum
mechanics which is related to the second part only, and which is foreign, in a sense, to the proper
quantum system. On the other hand, there is a close relation of this separate problem to the
quantum chaos itself (see Section 4 below and Ref.[4]). _

The importance of quantum chaos is not only in that it represents a new unexplored field of
nonintegrable quantum dynamics with many applications but also, and this is most interesting
for the fundamental science, in reconciling the two seemingly different dynamical mechanisms for
the statistical Jaws in physics.

Historically, the first mechanism was related to the thermodynamic limit N — oo in which
the completely integrable system becomes chaotic for typical (random) initial conditions (see,
e.g.,Ref.[6]). A natural question - what happens for a large but finite number of {reedoms .V - has

~ still no rigorous answer but the new phenomenon of quantum chaos, at least, presents an insight

into this problem too. This mechanism, which is equally applicable in both classical and quantum
mechanics, may be called the traditional statistical mechanics (TSM).

The second (new) mechanism is based upon the strong (exponential) local instability of motion
characterized by positive Lyapunov’s exponents A > 0 [6, 7). It is not at all restricted to large

~ N, and is possible, e.g., for N > 1 in a2 Hamiltonian system. However, this mechanism has been

operative, until recently, in the classical mechanics only. This phenomenon is called dynamical
chaos as it does not require any random parameters or any poise in the equations of motion.
Notice that in a Hamiltonian (time-reversible) system the motion is unstable in both directions of
time because for each positive A there is the equal negative one, and for almost all trajectories the
instability depends on positive (in a given direction of time) exponents only. Hence, the dynamical
chaos is also time-reversible, and no ’time arrow’ exists or is required in the theory.

The quantum system bounded in phase space has a discrete energy (frequency) spectrum and
is similar, in this respect, to.the finite-N TSM. In. both cases the motion-is almost periodic.
Moreover, such quantum systems are even completely integrable in the Hilbert space (see, e.g.,
Ref.[3]). Yet, the fundamental correspondence principle requires the transition to the classical
mechanics, including the dynamical chaos, in the classical limit ¢ — oo, where ¢ is some (big)

_ quasi-classical parameter, e.g., the quantum number n (the action variable, A = 1). Again, a

natural physical conjecture is that for finite but large ¢ there must be some chaos similar to the
finite= N TSM. Yet, in a chaotic quantum system the number of freedoms N does not need to
be large as well as in the classical chaos. The quantum counterpart of N is g, both quantities
determining the number of frequencies which control the motion. Thus, mathematically, the
problem of quantum chaos is similar to that for the finite-N TSM.

Some researchers believe that the only way out of the above apparent contradiction is the
failure of the correspondence principle [37). If it were so the quantum chaos would be, indeed, a
great discovery. 'Unfortunately’, there exists a less radical (but also interesting and important)
resolution of this diffculty to be discussed below.

The main difficulty here is in that the both problems suggest some chaos in the discrete
spectrum which is completely contrary to the existing theory of dynamical systems and to the
ergodic theory where such dynamics corresponds to the opposite limit of regular motion.

The ultimate origin of the quantum integrability is discreteness of the phase space (but not,
as yet, of the space-time!) or, in the modern mathematical language, the noncommutative geom-
etry of the former. This is the very basis of the whole quantum physics directly related to the
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fundamental uncertainty principle which implies a finite size of an elementary phase-space cell:
Az - Apzh (per freedom). )

As an illustration I will make use of the simple model described classically by the standard
map (SM) [7, 8] "

A=n+k-sinf, 0=0+T-7 (1)

with action-angle variables n, 8, and perturbation parameters 'k, T. The quantized standard rﬁap
(QSM) is given by [9, 10]

¥ = exp(—ik- cos§) - exp (_,‘%ﬂ.ﬁ’) ¥, (2)

where momentum operator i = —i8/88. To provide the complete boundedness of the motion
consider SM on a torus of circumference (in n)
2zm

L==7 3)

with integer m to avoid discontinuities. The quasi-classical transition corresponds to quantum
parameters k£ — o0, T — 0, L — oo while classical parameters K = kT = const, and m =
LT/2n = const remain unchanged.

The QSM models the energy shell of a conservative system which is the quantum counterpart
of the classical energy surface. :

In the studies of dynamical systems, botb classical and quantal, most problems upreachable .
for rigorous mathematical analysis are treated “pumerically” using computer as a universal model
With all obvious drawbacks and limitations such “numerical experiments” have very important
advantage as compared to the laboratory experiments, namely, they provide the complete infor-
mation about the system under study. In quantum mechanics this advantage becomes crucial as
in laboratory one cannot observe (measure) the quantum system without a radical change of its
dynamics.

2 The definition of quantum chaos

The common definition of the classical chaos in physical literature is the strongly unstable motion,
that is one with positive Lyapunov’s exponents A > 0. The Alekseev - Brudno theorem then
implies that almost all trajectories of such a motion are unpredictable, or random (see Ref.[11]).
A similar definition of quantum chaos, which still has adherents among both mathematicians as
well as a few physicists, fails because, for the bounded systems, the set of such motions is empty
due to the discreteness of the phase space and, hence, of the spectrum.

The common definition of quantum chaos is qguanium dynamics of classically chaotic systems
whatever it could happen to be. Logically, this is most simple and clear definition. Yet, in my
opinion, it is completely inadequate (and even somewhat helpless) from the physical viewpoint
just because such a chaos may turn out to be a perfectly regular motion as, for example, in case
of the perturbative localization [12]. In QSM the latter corresponds to k<l when all quantum
transitions are suppressed independent of classical parameter K which controls the chaos.
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I would like to define the quantum chaos in such a way to include some essential part of the
classical chaos. The best definition I have managed to imagine so far reads:

‘ the quantum chaos is finite-time (transient) dynamical chaos in discreie spectrum

In other words this new phenomenon reveals an intrinsic complexity and richness of the motion
with discrete spectrum which has been considered since long ago as the most simple and regular.
This is certainly in contradiction with the existing ergodic theory. In what follows I will try
to explain a new approach to the ergodic theory which is necessary to describe the peculiar
phenomenon of quantum chaos,’

3 The time scales of quantum dynamics

Already the first numerical experiments with QSM revealed the quantum diffusion in n close to
the classical one under conditions K21 (classical stability border) and k21 (quantum stability
border) [9]. Futher studies confirmed this conclusion and showed that the former followed the
latter in all details but on a finite time intervel only [10, 13). This observation was the clue to
understanding the dynamical mechanism of the diffusion, which is apparently an aperiodic process,
in discrete spectrum. Indeed, the fundamental uncertainty principle implies that the discreteness
of the spectrum is not resolved on a sufficiently short time interval. Whence, the estimate for the
diffusion (relazation) time scale :

tr~p0 <o (4)

Here g is the density of (quasi)energy levels, and go is the same for the operative eigenstafes which
are actually present in the initial quantum state 1(0) and, thus, do actually control the dynamics.
In QSM the quasi-energies are determined mod 27 /T and, surprisingly, ¢ = LT/2%x = m is a
classical parameter (3). As to go, it depends on the dynamics and is given by the estimate (10,
13]):

t An)?
%Q’VTRE"'R‘”DE(( :))s? (5)

Here 7 is discrete map’s time (the number of iterations), and D is the classical diffusion rate.
This remarkable expression relates an essentially quantum characteristic (7r) to the classical one
(D). The latter inequality in Eq.(5) follows from that in Eq.(4), and it is explained by the
boundedness of QSM on a torus. In the quasi—classical region 7o ~ k* — oo (see Eq.(1)) in
accordance with the correspondence principle. )

Besides relatively long time scale (5) there is another one given by the estimate [14, 10]

Ing Ink
t, ~ A —*m' (6)

where ¢ is some (large) quasi-classical parameter, and where the latter expression holds for QSM.
It may be termed the random time scale since here the quantum motion of a narrow wave packet
is as random as classical trajectories according to the Ehrenfest theorem. This was well confirmed
in a number of numerical experiments [15]. The physical meaning of scale ¢, is in fast spreading
of a wave packet due to the strong local instability of classical motion.
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Even though the random time scale t, is very short it grows indefinitely in the quasi—classical
region (g, k — o), again in agreement with the correspondence principle.

Big ratio tg/t, imlies another peculiarity of quantum diffusion: it is dynamically stable as was
demonstrated in striking numerical experiments [16] with time reversal.

Thus, the quantum chaos possesses all the finite-time properties of the 'true’ (classical-like)
chaos on the corresponding time scales in spite of the discrete spectrum. To put it another way,
the phenomenon of quantum chaos demonstrates that the limiting case of the regular motion
in the general theory of dynamical systems, which appears to be fairly simple and transparent,
reveals, in the quantum chaos, its internal complexity and richness to the extent of approaching
its opposite, the 'true’ classical chaos, or deterministic randomness.

I think that the conception of characteristic time scales of quantum dynamics is a satisfactory
resolution of the apparent contradiction between the correspondence principle and the quantum
transient (finite-time) pseudochaos. Some physicists, however, feel that such an explanation is,
at least, ambiguous because it includes the two limits which do not commute:

lim lim # lim lim

Jtj—00 §=20 9= |t|—o0
While the first order leads to the classical chaos, the second one results in an essentially quantum
behavior with no chaos at all. To relax these doubts I notice that in physics one does not need
any limits at all, and can describe, principally, anything quantum-mechanically. If, nevertheless,
we would like to make use of the much simpler classical mechanics (for practical purposes) the
only one limit (g —= o0) is quite sufficient as the physical time is certainly finite. At last, even-if
it would be helpful for some reason to formally take the limit |t| — oo this should be comizhonal
that is one for a fixed ratio ltI/tR(q), for example. The limit |t| — oo is related to the existing
ergodic theory which is asymptotic in t. Meanwhile the new phenomenon of the quantum chaos
requires the moditication of the theory to a finite time which is a difficult mathematical problem
still to be solved. The main difficulty is in that even the distinction between the two opposite
limits in the ergodic theory - discrete and continuous spectra - is asymptotic only.

In any event, since quantum mechanics is commonly accepted as the universal theory, the
phenomenon of the ’true’ (classical-like) dynamical chaos strictly speaking does not exist in nature.
Nevertheless, it is very important in the theory as the limiting pattern to compare with the real
quantum chaos. On the other hand, the practical importance of statistical laws even for a finite
time interval is in that they provide a relatively simple description of the essential behavior for a
very complicated dynamics.

4 The quantum steady state

As a result of quantum diffusion and relaxation some steady state is formed whose nature depends
on the ergodicily parameter

I, D -
A = Z ~ f. (‘)
where I, is the so-called localization length (see Eq.(10) below). If A 3> 1 the quantum steady state

is close (at average) to the classical statistical equilibrium which is described by ergodic phase
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density g4(n) =const (for SM on a torus) where n is a continuous variable. In quantum mechanics
n is integer, and the quantum phase density go(n,7) in the steady state fluctuates [17, 5), the
ergodicity meaning

s =Tlm = Q

where the bar denotes time averaging.
According to numerical experiments the ergodicity does not depend on the initial state which
implies that all eigenfunctions ¢m(n) are also ergodic, at average, with Gaussian fluctuations {17,

5] and the dispersion

1
(Iém(m) = T ()

This is always the case sufficiently far in the quasi-classical region as A ~ k?/L ~ Kk/m —
with k = oo (K = kT and m = LT/2x remain constant) in accordance with old Shnirelman’s
theorem [18]. .

An interesting unsolved prob]em is the microstructure of ervodxc eigenfunctions, particularly,
the so-called ’scars’ [29)] whxch reveal the set of classical (unstable) periodic trajectories (see Ref.[30)
for the theory of scars). -

Finite fluctuations (9) show that a smgle chaotic quantum system in a pure state described
by #,(n,7) represents, in a sense, a finite statistical ensemble of M ~ L “particles”. Moreover,
Eq.(9) shows that all the basis states in a chaotxc qua.ntum system are statistically independent

as 1i the systein were in a mixed state and ot in a pure one as it actually is. This'means that the

quantum chaos provides the dynamical loss of quantum coherence which is of principal importance
in many problems, for example, in the theory of quantum measurement. The fluctuations résult,
particularly, in partial recurrences toward the initial state but the recurrence time is much longer
as compared to the relaxation time scale 7 and sharply depends on the recurrence domain.

If A « 1 the quantum steady state is qualitatively different from the classical one. Namely, it
is localized in n within the region of size I, around the initial state if the size of the latter I < /,.
Numerical experiments show that the phase space density, or the guantum statistical measure , is
approximately exponential [10, 13]

1 2|n
gs(n) = 7 exp (——;——l) ; I,=D (10)

for initial g(n,0) = 6(n). The quantum ensemble is now characterized by M ~ I, ~ k? “particles”.
The relaxation to this steady state is called diffusion localization , and it is described approx-
imately by the diffusion equation [19, 28]

_(22 10 8¢ 0g n
57 =250 % T on | (11)

for initial g(n,0) = é(n) where new time

7 = raln (1+%) (12)

322

CRI o



accounts for the discrete motion spectrum [20]. The last term in Eq.(11) describes the “backscat-
tering” of 1 wave propagating in n which eventually results in the diffusion localization. The
fitting parameter 7r = 2D was derived from the best numerical data available (see Ref.[21] where
a different theory of diffusion localization was also developed).

5 Concluding remarks

In conclusion I would like to briefly mention a few important results for unbounded quantum
motion. In SM it corresponds to L — oo. First, there is an interesting analogy between dynamical
.localization in momentum space and the celebrated Anderson localization in disordered solids
which is a statistical theory. The analogy was discovered in Ref.[22] and essentially developed in
Ref.[23]. It is based upon (and restricted by) the equations for eigenfunctions. The most striking
(and less known) difference between the two problems is in the absence of any diffusion regime in
1D solids [24]. This is because the energy level density of the operative eigenfunctions in solids
ldp 1
which is the relaxation time scale, is always of the order of the time interval for a free spreading of
the initial wave packet at a characteristic velocity u. In other words, the localization length [ is of
the order of the electron scattering free path. On the contrary, in momentum space, for instance
in the standard map, each scattering (one map’s iteration) couples ~ k unperturbed states, so
that ~ k% 3> 1 scatterings are required to reach the localization ! ~ k2. Arnother ( qualitative)
explanation of this surprising difference is in that the density of quasienergy levels for driven
systems is always much higher as compared to that of energy levels. The same is true for a
conservative 2D system as compared with 1D motion in solids. Thus, the Anderson localization
is the spreading, rather than diffusion, localization.
. Another similarity between the two problems is in that the Bloch extended states in periodic
potential correspond to a pecular quantum resonance in QSM for rational T/4= [9, 10).
An interesting open question is the dynamics for irrational-Liouville's (transcendental) T'/4=x.
As was proved in Ref.[25] the motion can be unbounded in this case unlike that for a typical
irrational value. The latter is the result of numerical experiments, no rigorous proof of localization
for k 3> 1 has been found as yet. In Ref.[28] the conjecture is put forward, supported by some
semiqualitative considerations, that depending on a particular Liouville’s number the broad range
of motions is possible, from purely resonant one (Jn| ~ 7) down to complete localization (|n]<!).
If the quantum motion is not only unbounded but the growth of unbounded variables is expo-
nential, the “true” chaos (not restricted to a finite time scale) can occur. A few exotic examples
together with considerations from different viewpoints can be found in Refs.[10, 26). One particu-
lar model is 3.D linear oscillator with phase-dependent frequencies described by the Hamiltonian
3 a '
E (wk(ﬁl, b2, 93)15,, + ﬁkwk(gx, 62, 93)); g = —i—
k=1 aek
However, such chaos does not seem to be a typical quantum dynamics.
The final remark is that the quantum chaos, as defined in Section 2, comprises not only

quantum systems but also any linear, particularly classical,” waves [27]. So, it is essentially the

H=

W~
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linear wave chaos . Moreover, a similar mechanism works also in completely integrable nonlinear
systems like Toda lattice, for example [31). From mathematical point of view all these new ideas
require some perestroika in the existing ergodic theory. Perhaps, better to say that a new ergodic
theory is wanted which, instead of benefiting from the asymptotic approximation (|t — oo or
N — o0), could analyze the finite-time statistical properties of dynamical systems. In my opinion,
this is the most important conclusion from the first attempts to comprehend the quantum chaos.
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Appendix: universal squeezing of coherent states

The coherent states have been introduced and are widely used as the special most narrow wave
packets for the linear harmonic oscillator. In this and only this case the packets do not spread, and
it allows, particularly, for the unambiguous distinction between the coherent and squeezed states
which attract recently much attention [32). The generalization of both onto nonlinear oscillations
remains unclear as many different attempts do attest [33]. The main obstacle here isa universal
phenomenon of the stretchin g/squeezing for any narrow wave packet in nonlinear dyriamics. Even
in a completely integrable system the linear (in time) local instability of motion always occurs
just as a result of nonlinearity which makes the frequencies w(n) dependent on initial conditions:
In quanturn mechanics it corresponds to unequal energy level spacings. As a result the squeezing
parameter

dmn
s(t) = 7 2~ n(A0L~ (An) 1 ~ (nwt)?
min
permanently grows with time. Here dmsz ~ VNAS ~ (nwt)An//n and dmin ~ 1/dmes are
the maximal and minimal dimensions, respectively, of an initially ’round’ (coherent) wave packet
(An/\/a ~ /nA@ ~ 1) on the action-angle phase plane in polar coordinates /n, 6; v, =
(n/w)|dw/dn| is dimensionless nonlinearity, and the minimum-uncertainty relation [34]
drnas - dmin ~ 1 used is the quantum counterpart of the classical phase-space area conservation.
The former is not exact (35
aw w BPW 3
ar . 1 dw PW ~Wwu, (An)
dt 24 dn? 06°
where W(n, 8, t) is the Wigner function, and v; = (n?/w)d’w/dn®. This estimate determines the
inflation time scale t;; when the phase-space area A, occupied by a quantum state, substantially
increases (AA ~ A):

n?

n2

(An)?

= vn (s0~1)

pwtyy ~
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The latter estimate holds for the coherent initial state (so = (An)?/n=1).
It is instructive to compare t;; with the two other characteristic time scales of the packet

dynamics, namely

o squeezing time scale (As ~ 1) nwiy ~ Ja/An =1 (so ~ 1)
o siretching time scale (A8 ~1): wnwty ~ n/An — vr (s0 ~ 1)

In quasiclassics (n > 1) tsg Kty ~ tig (s0 ~ 1). If An & /n (initial squeezing parameter
sp 3> 1) the discreteness (quantization) of action n comes into play and destroys the wave packet.
Apparently, it happens when An. ~ 1 at the packet center, or Af ~ 1. Hence, beyond the
stretching time scale t,, a single packet does no longer exist. In a sense, t,; is the packet life time.
The ultimate origin of the packet inflation is in that the uncertainty relations are generally
inequality. An attempt [36] to reformulate themn as the equality, using the universal relation '

/ W?dpdq = ,,i_

for any pure state, is very restrictive as W may be negative. Particularly, this is just the case
during inflation when W oscillates around zero.
Recently another version of 'phase-space density’ (also called Husimi distribution)

' 1
S, g,t) = gzl <al¥>f

becairie very popular. Even though this function bas & clear physical meaning as the expansion
in the basis of the coberent states at points a = (¢ + 1p)/ V2 and, moreover, is never negative it
may substantially distort the picture of quantum evolution owing to the inherent restriction of
resolution in both p and ¢ separately. Particularly, for a classically unstable and, hence, chaotic
motion the squeezing of a narrow wave packet is almost completely hidden, the stretching only
showing up [13]. :

In the latter case the squeezing (as well as stretching) is most fast ( s(t) ~ exp(2At) where
the instability rate A is the Lyapunov exponent), and it explains a very short random time scale
(6). This scale essentially depends on the initial wave packet, estimate (6) corresponding to
the special, least squeezing, packet with An ~ (A6)? ~ Vk. This is also a sort of coherent
state but very unusual one which depends not on the action n but on perturbation parameter
k (An/VE ~ VEAS ~ 1). The squeezing due to the local instability is terminated at time
(6) by the distruction of the packet which disintegrates into many scattered pieces [15] when
AB ~ An ~ 1 as explained above. However, if the packet resides on a classical (unstable) periodic
trajectory of period P <t, the squeezing is restricted, due to periodicity, by the time P/2, and a
quasistationary structure may exist. This phenomenon manifests itself in the so—called ’scars’ on
the chaotic eigenfunctions [29, 30]. The set of such almost 'frozen’ packets may form a natural
coherent basis for chaotic quantum systems [19].

In conclusion ] would like to emphasize again that even though the distinction between coherent
and squeezed states remaines, as yet, ambiguous the squeezing itself is generic.
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Abstract

The general theory of atomic angular momentum states is used to derive the
Wigner distribution function for atomic angular momentum number states, co-
herent states, and squeezed states. These Wigner functions W(6,¢) are
represented as a pseudo-probability distribution in spherical coordinates 6 and ¢ on

the surface of a sphere of radius ‘Jj(j+1) where j is the total angular momentum.

1 Introduction

The phase space description of electromagnetic fields has had great success in
leading to an understanding of the relationship between semiclassical and quantum
theories of light. It was Sudarshan [1] who proved the optical equivalence theorem, i.e.,
he derived the relationship between the quantities measured by a photodetector and the
mean values of the corresponding operators. He showed that the function appearing in
the diagonal coherent state representation, that is calculated from the density matrix,
provides a link between the semiclassical and quantum descriptions. This function,
now denoted by P(a), is generally singular for nonclassical states [2]. In such cases the
Wigner function [3,4] has proved to be especially attractive as an alternative. The
Wigner function has also proved to be quite useful in discussing related topics [5] such
as the photon number distribution and the phase operator distribution. In these
problems, the concept of the area of overlap in phase space has been especially useful.

The nonclassical characteristics of the atomic systems, particularly a collection of
two-level atoms, has been a subject of much investigation [6,7). Much of the work has
concentrated on the direct calculation of the variances in the atomic operators such as

Jy, J',and J~. Very little has been done on the relationship between the nonclassical
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aspects and the phase space distributions for atomic operators. For general angular
momentum systems, Arecchi, et al. [8] introduced the analog of the diagonal coherent

state representation

p = [ P@.p) 0B (@.Bl sina da dp, o)
where [ a,f) represents the atomic coherent state
4 L Z12 @ j+m o jm
fa,B) = n;.j(mzij) (sin -2-) (cos E) e-l(iﬂn)ﬂ ljm) , @)

and where /jm) is the eigenstate of J and J, . The parameters @ and B correspond to
6 and ¢ except that a is measured off the south pole. The coherent state obtains the

minimum of the angular momentum uncertainty relation (AJi.) (AJ“;') 2 IJ291%/4,

where x’, y’, and z’ form an orthogonal coordinate system with 2’ in the F direction with
angular coordinates (a,f). The coherent state is just a rotation of the ground Fock state
|j,—j) away from the south pole. Arecchi and co-workers discussed the utility of the
function P(a,p) in atomic problems, and Scully and co-workers have discussed the

Wigner function for spin-% particles [9). Using the general theory of multipole

operators [10), Agarwal [11] introduced the Wigner function for systems of arbitrary
angular momentum. To arrive at this distribution, we first expand the atomic angular

momentum operators as
2j +K

G - ;; QZ_K Gxq Txq - @

where Tyq is the multipole operator defined by
L i K
Txo = 1" J2k+1 |1jm) Gm’, @
KQ ) Z 7" 2k (_m Q m)'1m>0m|

m=-j m =-j

where (J_m é g:,) is the usual Wigner 3j symbol. The expansion coefficients
in Eq. (3) are obtained from the orthogonality of the multipole operators, namely

Grq = Tr(6Thy) ®)
The Wigner function associated with G is then defined by [11]
2j +K
WP = ;) sz YxQ(8.9)Gxq » ®)

where Ygq are the usual spherical harmonics. Note that
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TrG = w/gi;—lIW(G,q» in0 do do = 1, )

a general property desired of any distribution function. Note further that if two
operators GV and G? are represented respectively by the Wigner functions w(l

and W@, then
Tr (G,G,) = f w8,9) W(0,¢) £in6 d do, ®)

a defining property of the Wigner distribution. In fact these two features, Eqs. (7) and
(8), can be used to derive the form, Eq. (6), of the Wigner function. Thus, unlike the P
function, all expectation values can be obtained in terms of the Wigner functions alone.

In this paper we shall consider the structure of the Wigner function associated
with the important states like (i) Fock states /j,m), (ii) coherent states /a,$), and
(iii) squeezed states /{,m) associated with a collection of two-level atoms interacting
with a squeezed photon bath. We examine how the quantum character of the state is
reflected in the properties of the Wigner function.

2 Angular Momentum States |jm)

We first obtain the Wigner function for the state /jm). The density matrix can be
written in the form

p = |im) Gm| . ©)

Upox::h using Egs. (4) through (6), that are used in defining the Wigner function W, we
find that

2 i K
W, (6,0) = Zb Yo 00 1™ J2KT (10)

-m 0 m

As expected W;,,, is independent of @.

This function is plotted in Fig. 1 as a function of 6 € (O,z) and ¢ € (-mn) for j=5 and
m=0, -1, ... 5. We plot the distribution both as planar and spherical surfaces. If we
suppose that /jm) is an orbital angular momentum state, then quantum-mechanically
we would expect the angular momentum vector of length \NJG+I) % to be oriented inside
a sphere of radius VjG+I) # such that its z component is mh wherem =-5, ..., 5. This
gituation is depicted in Fig. 2 [12]. The Wigner function W(6,¢), when integrated over
the domain of spherical angle, 6 € (0,r) and ¢ € (-x,7m), contributes the most positive
probability at precisely these locations in 8. At these 6 values there is always one peak
on the “wavy sea” that is not cancelled by a trough and so contributes a large amount of
probability. In Fig. 1 we plot the function W(6,¢) as a two-dimensional surface, and also

the normalized function W= W/ \jG+1) in spherical coordinates so that the oscillations
can be viewed as variations in the surface of a sphere of radius one.

331



(a)

(@)

332

(L]

)

R /|1 T} em

(L Cammmn |

BRI

]

N T



(k)

g

333

mn




FIG. 1. Here we plot for 6 € (0,x) and @ € (-x,n), the normalized Wigner

function WFock = WFock/\j(G+1) , where WFock(g,¢) is given by Eq. (10). The
angular momentum Fock states represented here are /jm) = /5,m) where m = 0,
-1, -2, -3,~4, -5. When integrated over 6 and ¢ , the Wigner function contributes
the most positive probability precisely at the locations where the angular

momentum vector for /jm) of length ¥jG+1) & has z component m#% (see Fig. 2).
These contributions occur where the dominant positive crest of the Wigner
function — the peak that is not cancelled by any troughs — contributes. To bring
out all the features of W(6,p) we plot it first as a two-dimensional surface
function of 6 and ¢ in (a), (c), (e), (g), (i), and (k). This method of presentation
brings out the scale of the local positive and negative variations of W with
respect to the plane 6,@ = 0. Then in (b), (d), (), (h), (), and (1), we take a global

view by plotting W6, = W(6,¢) /\)j+1) on a sphere of radius one.

FIG. 2. Here we show a schematic diagram of the angular momentum
vector for the Fock states inside a sphere of radius VjG+1) . The vectors all have

length VjG+1) & but z component m%. These vector locations correspond to the
maximal contributions from the Wigner functions shown in Fig. 1. In
particular, the Wigner function always has an uncancelled dominant peak at
precisely these locations in the angle 6.
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8 Atomic Coherent State /o,f)
We next consider the Wigner function for the atomic coherent state, Eq. (2),

p= Ia.ﬁ) (aaﬂl . (11)

Using Eqgs. (2), (4), and (5), the coefficients of the operator G for the density matrix,
Eq. (11), are found to be

J 12 12
. . ” _
Gt L ¢ B (an a2)? ) (jf’m) (m 3 ) (sin a/2)¥*2®

KQ ,
m=-j
x (cos a/2)¥ 2™ 1y Q 2K +1)'2 ({n _m-Q g) : (12)

The Wigner function We°berent(g o) ig then given by Eq. (6) and is plotted in Fig. 3 for
a =f =n/4, recalling that @ is measured at the south pole. (Again we have

normalized W = W/Vj(+I).) The coherent state appears as a positive perturbation on
the surface of a unit sphere. It is a Gaussian-like distribution located on the sphere’s
surface at 6 = 3n/4, ¢ = x/4; the “Wigner toothache” state. It is just a rotation of the
ground Fock state Wigner function from section 2. The Gaussian shape is analogous to
that found for the Wigner distribution for coherent states of the single mode radiation

field.

{a)

®)

FIG. 3. Here we plot the Wigner distribution Weoherent; 7077 for the
coherent state /a, ), Eq. (2). We choose the parameters a=f=x/4 that correspond
to a Gaussian distribution localized at 8 = 3z/4, ¢ = /4. This distribution is
qualitatively similar to that of the coherent state for photons. Again we present a
two-dimensional surface view (a) and a spherical coordinate perspective (b).
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4 Atomic Squeezed State /m)
We finally consider the state [12,13] of the angular momentum system defined by

G m) = ot exp (07,) exp(-ind,/2)15m), (19)
where o+, is the pormalization constant. For m = -5, this state — generated by a non-

Hermitian operator — describes the behavior of a collection of two-level atoms
interacting with a squeezed coherent photon state. In the state, Eq. (13), the x

quadrature, i.e., Jx i8 squeezed as per Eq. (13),

(an? - %I(:)l - I(J)(l-e"")l , (14)
where { is defined by

2® = tanh 2171) . as)

This relation implies that ((. AJy2) < [WJg) /2 that shows a suppression of x noise, AJ,
in uncertainty relation (aP) (. AJ,.)z) 2 KJ)I? /4 at the expense of the y fluctuations,
AJy. Thus the states of Eq. (13) can be considered as suitable candidates for squeezed
states of the general angular momentum system, besides, Agarwal and Puri [13] have
shown that the states, Eq. (13), are the eigenstates of the operator

(J ~ cosh [/ +J* sinh [{/)/VZsinh 2 ] with the eigenvalue m, and that these states
are the analog of the two photon coherent states (2] for photons. Note further that
Eq. (13) can be written in terms of the elements of the rotation operator coefficients

d’ . (x/2) via the relationship

Gl (p) = Ape®™al  (2), (16

where we define
5 (G+m)! G-m)! G+p)! (jr-p)!)”2 i | 1) -
mp (%/2) = i Gpa)! q (@+pm) G+m9! an

2 q=-]

Upon using Egs. (13), (16), and (17) for the squeezed state, and Eqs. (4) and (5) for the
definition of the Wigner function, we find the coefficients of the squeezed density

operator G to be
(m+mH O j j
; . e d’w A

b
=3 Y o (b |5 [ ool 09
Zldm"p‘ ¢
m”

m=-j m'=-j

where we have also introduced the value of the normalization constant. The Wigner
distribution W*aueezed (@9 obtained from Eq. (6), using Eqs. (17) and (18), is plotted in
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Fig. 4forj=56 ﬁndp = -5. We take the squeezing parameter 6 equal to -2.13x10-5
which, in the Agarwal and Puri system of two-level atoms interacting with a squeezed
photon bath, corresponds to a mean photon occupation number of

7i = ginh? %arctanh(e’e) = 50 corresponding to { = 2.65. The plot is again normalized

so that the elongated Gaussian of the squeezed state appears as a “Wigner banana”
draped across the surface of sphere of radius one at the south pole. (To see this, one
must take the surface in Fig. 4a and mentally map it onto a sphere of radius one, as in
Fig. 4b.) Notice that the localization of the state is squeezed in the x direction at the
expense of knowledge about the y location. and Puri [13) have shown how the
atomic states Eq. (13) can be produced if the collection of two-level atoms interacts with a
broad band squeezed bath and if one concentrates only on the steady-state solution for
the collective system. The parameter { characterizes the squeezed bath with average

photon number equal to sinh?{ .

(a)

®)

FIG. 4. Here we plot the Wigner function for a squeezed angular momentum
state /{, -5 ) defined by Eq. (13). The function Wsaueezed(g o) i computed using
Eqs. (6), (17), and (18) for a squeezing parameter of 6 = -2.13 x 10~5 corresponding
to a mean occupation number of 7 = 50. In (a) we plot the function as a surface
W(6,¢) as before. We have normalized the variation in the surface in spherical

coordinates to a sphere of radius VJ(+1) in (b) so that the elongated Gaussian
appears here as a “Wigner banana” draped across the surface of the sphere of
radius one at the south pole. Notice that the squeezed state is more localized in
the x’ direction than the coherent state, Fig. 3, at the expense of decreased
localization or increased noise in the y’direction.
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5 Summary and Conclusions

In summary the Wigner distribution for a general angular momentum state has
been derived and given explicitly for a Fock state, a coherent state, and a squeezed state.
Represented as a pseudo-probability distribution on the sphere of radius one, the
Wigner function is plotted for these three situations. These plots enable us to
understand the nonclassical nature of the states of a collection of identical two-level
atoms since the collection is described by the addition of the spin operators for each

atom.
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Abstract

It is shown that the wavelet is the natural language for the Lorentz covariant description
of localized light waves. A model for covariant superposition is constructed for light waves
with different frequencies. It is therefore possible to construct a wave function for light waves
carrying a covariant probability interpretation. It is shown that the time-energy uncertainty
relation (At)(Aw) ~ 1 for light waves is a Lorentz-invariant relation. The connection between
photons and localized light waves is examined critically. -

1 Introduction

The word “squeeze” is relatively new in physics, but the squeeze transformation has been one of
the most important transformations in both relativity and quantum mechanics [1]. The geometry
of squeeze is very simple. Let us consider the two-dimensional zy coordinate system. We can
expand the T coordinate while contracting y in such a way that the product zy is preserved.
This transformation is built in many branches of physics, including classical mechanics, special
relativity, quantification of uncertainty relations, the Bogoliubov transformation in condensed
matter physics, and two-photon coherent states in quantum optics [2]. Indeed, this new word
enables us to study the squeeze transformations more effectively and systematically.

The concept of squeeze in quantum optics was developed from the parametric oscillation. Let
us start with a simple harmonic oscillator with a given frequency. If we add a small sinusoidal
variation to the frequency, the original oscillator will be modulated [3], and the resulting oscillation
will be, to a good approximation, a superposition of two oscillations with different frequencies. We
can use the mathematics of this oscillator system for the Fock-space description of creation and
annihilation of two photons in a coherent or correlated manner, created in a laser cavity where
the index of refraction undergoes a sinusoidal variation with respect to time.

Indeed, the mathematics of this two-photon system was worked out by Dirac in 1963 [4]. It is
possible to translate the mathematics of this two-photon system into that of the Wigner phase-
space distribution function defined over four-dimensional phase space. It is remarkable that the
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two-photon coherence we observe in laboratories can be described by the squeeze transformations
in this four-dimensional phase space [5].

Fourteen years before the appearance of his 1963 paper [4], Dirac observed that the Lorentz
boost in a given direction is a squeeze transformation. In his 1949 paper entitled ”Forms of
Relativistic Dynamics” [6], Dirac observed that the Lorentz boost along a given direction is a
squeeze transformation. The apphcatlon of this idea to relativistic hadronic system was made in
1973 [7].

These days, we have a new mathematical technique called wavelets, which serves a useful
purpose in signal analysis [8]. This technique contains many features which are not available
in the conventional method of Fourier analysis. It accommodates squeeze transformations. The
wavelets can also constitute a representation of the Lorentz group. With these features in mind,
we shall examine in this paper whether the wavelet can serve as the proper language for covariant
localized light waves.

Photons are important particles in physics. Since they are relativistic particles, the quantum
mechanics of photons occupies an important place in relativistic quantum mechanics. The diffi-
culty in formulating the theory of photons is that there is no position operator which is covariant
and Hermitian. This is known as the photon localization problem [9]. However, when we discuss
photons, we always think of localized light waves in a given Lorentz frame. The question then is
whether someone in a different Lorentz frame will think in the same way.

With this point in mind, we considered the covariance of localized light waves [10]. It was noted
in our 1987 paper that localized light waves cannot represent photons. It was shown however that,
if the momentum distribution is sufficiently narrow, the light wave distribution can numerically
- be close to that of the photon. For this reason, it is still useful to study the covariance of localized
light waves.

The question of relating waves with photons is a well-defined problem in physics [11], even
though the problem has not yet been completely solved. In this paper, we shall bring them closer
togeth(::r by using the wavelet formulation of light waves.

2 Localized Light Waves

For light waves, the Fourier relation (At)(Aw) ~ 1 was known before the present form of quantum
mechanics was formulated [12, 13]. However, the question of whether this is a Lorentz-invariant
relation has not yet been fully examined. Let us consider a blinking traffic light. A stationary
observer will insist on (At)(Aw) ~ 1. An observer in an automobile moving toward the light will
see the same blinking light. This observer will also insist on (At*)(Aw®) ~ 1 on his/her coordinate
system. However, these observers may not agree with each other, because neither ¢ nor w is a
Lorentz-invariant variable. The product of two non—invariant quantities does not necessarily lead
to an invariant quantity.

Let us assume that the automobile is moving in the negative z direction with velocity parameter
B. Since both ¢ and w are the time-like components of four-vectors (x,t) and (k,w) respectively,
a Lorentz boost along the z direction will lead to new variables:

t'=(t+82)/(1 - )2 W= (w+Bk)/(1 - B, (1)
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where the light wave is assumed to travel along the z axis with £ = w. In the above transformation,
the light wave is boosted along the positive z direction. If the light passes through the point z =0
at £ = 0, then ¢t = z on the light front, and the transformations of Eq.(1) become

. __ 1+IB 1/2 * 1+ﬁ\’1/2
1" = (m) t, 9% —(1—_‘?) W. (2)

These equations will formally lead us to

‘

oy

+
1 —

)

(A7) (Awr) =

(At)(Aw), (3)

w

which indicates that the time-energy uncertainty relation is not a Lorentz-invariant relation, and
that Planck’s constant depends on the Lorentz frame in which the measurement is taken. This is
not correct, and we need a better understanding of the transformation properties of At and Aw .

This problem is related to another fundamental problem in physics. We are tempted to say
that the above-mentioned Fourier relation is a time-energy uncertainty relation. However, in
order that it be an uncertainty relation, the wave function for the light wave should carry a
probability interpretation. This problem has a stormy history and is commonly known as the
photon localization problem [9]. The traditional way of stating this problem is that there is no
self-adjoint position operator for massless particles including photons.

In spite of this theoretical difficulty, it is becoming increasingly clear that single photons can
be localized by detectors in laboratories. The question then is whether it is possible to construct
the language of the photon localization which we observe through oscilloscopes. Throughout the
history of this localization problem, the main issue has been and still is how to construct localized
photon wave functions consistent with special relativity. ‘

However, in this paper, we shall approach this problem by constructing covariant localized light
waves and comparing them with photon field operators. As we shall see, the task of constructing
a covariant light wave is constructing a wavelet representation of a light wave. First, we construct
a unitary representation for Lorentz transformations for a monochromatic light wave. It is shown
then that a Lorentz-covariant superposition of light waves is possible for different frequencies.
After constructing the covariant light wave, we shall observe that there is a gap between the
concept of photons and that of localized waves. From the physical point of view, this gap is not
significant. However, there is a definite distinction between the mathematics of photons and that
of light waves.

3 Affine Symmetry of Wavelets

Like Fourier transformations, wavelets are the superposition of plane waves with different frequen-
cies. In addition, the distribution function has the affine symmetry. Let us briefly examine what
the affine transformation is [14].

To a given number, we can add another number, and we can also multiply it by another real
number. This combined mathematical operation is called the affine transformation. Since the
multiplication does not commute with addition, affine transformations can only be achieved by
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matrices. We can write the addition of b to x as
z! 1 b T
(1)‘(01)(J' (4)
This results in 2’ = z + b. We shall call this operation translation. The inverse of the above
translation matrix is . ;
(b 7) ®)

We can represent the multiplication of by e” as

z’' e 0\ [z
(1)=(% 1)) - (©)
which leads to z' = e"z. This multiplication operation is usually called dilation. The inverse of
the above dilation matrix is )
( e”” 0 ) 7
0 1) - (7)

The translation does not commute dilation. If dilation precedes translation, we shall call this
the affine transformation of the first kind, and the transformation takes the form

(o D D=3 1) ®

If the translatlon is made first, we shall call this the affine transformation of the second kind. The

transformation takes the form
e” 0 1 b e’ e
(9 DG 1)=(% v) )

Indeed, the affine transformations of the ﬁrst. and second kinds lead to
' =e"z+b, ' =e"(z +), (10)

respectively. Let us next consider inverse transformations. The inverse of the first-kind transfor-
mation of Eq.(8) becomes an affine transformation of the second kind:

e 0\ /1 b e —e"b
(o.‘-1>(o 1)‘(0 L) (11)
while the inverse of the second kind of Eq.( ) becomes an affine transformation of the first kind:
/0 =B\ e 0\ _ (e =b
G )% )=(% 1) (12)
The distinction between the first and second kinds is not mathematically precise, because the

translation subgroup of the affine group is an invariant subgroup. We make this distinction purely
for convenience. Whether we choose the first kind or second kind depends on the physical problem
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under consideration. For a covariant description of light waves, the affine transformation of the
second kind is more appropriate, and this affine transformation takes the form

2=z +b), (13)

and its inverse is
c=¢"r' —b=e""(z' — €"b). (14)
Therefore, the transformation of a function f(z) corresponding to the vector transformation of
Eq.(13) is
f (e"’a: - b) =f (e"’(z - e"b)) : (15)
This translation symmetry leads us to the concept of “window,” which will be discussed further

in Sec. 4. , }
Next, let us consider the normalization of the function. The normalization integral

/ If (72 — b)[2dz (16)

does not depend on translation parameter b, but it depends on the multiplication parameter 7.
Indeed, '

/If(e"’:c - b)*dz = e”/ |f(z — b)|*dz. (17)
In order to preserve the normalization under the affine transformation, we can introduce the form

[8]
e "2 f(e™"z - b). (18)

This is the wavelet form of the function f(e™"z — b). This is of course the wavelet form of the
second kind. The wavelet of the first kind will be

e"’lzf (e"”(z — b)) . (19)

Both the first and second kinds of wavelet forms are discussed in the literature [8]

4 Windows

There are in physics many distributions, and their functional forms usually extend from minus
infinity to plus infinity. However, the distribution function of physical interest is usually concen-
trated within a finite interval. It thus is not uncommon in physics that mathematical difficuities
in theory come from the region in which the distribution function is almost zero and is physically
insignificant. Thus, we are tempted to ignore contributions from outside of the specified region.
This is called the "cut-off” procedure.

One of the difficulties of this procedure is that a good cut-off approximation in one Lorentz
frame may not remain good in different frames. The translational symmetry of wavelets allows us
to define the cut-off procedure which will remain valid in all Lorentz frames.

We can allow the function to be nonzero within the interval

a<z<a+w, (20)
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while demanding that the function vanish everywhere else. The parameter w determines the size
of the window. The window can be translated or expanded/contracted according to the operation
of the affine group. We can now define the window of the first kind and the window of the
second kind. Both widows can be translated according to the transformation given in Eq.(4). The
window of the first kind is not affected by the scale transformation. On the other hand, the size and
location of the window of the second kind becomes affected by the scale transformation according
to Eq.(11). Depending on our need, we can define the window to preserve the information. The
idea of introducing the new word "window” is to define the information-preserving boundary
conditions.

The window may become a very powerful device in describing the real world, especially in
localization problems dealing with distributions concentrated within a finite region. The concept
of cut-off in a distribution function is not new. However, the cut-off process causes mathematical
difficulties usually introducing undesirable singularities. Also the cut-off process destroys the
Lorentz covariance, unless it is done carefully. A good approximation in one Lorentz frame is not
necessarily a good approximation in different frames. In this paper, we shall examine possible role
of wavelets and windows in discussing localized light waves and their connection to photons.

5 Light Waves and Wave Packets in Quantum Mechanics

We are concerned here with the possibility of constructing wave functions with quantum proba-
bility interpretation for relativistic massless particles. The natural starting point for tackling this
problem is a free-particle wave packet in nonrelativistic quantum mechanics which we pretend
to understand. 'Let us write down the time-dependent Schrddinger equation for a free particle
moving in the z direction: 7

. d 1 &

im¥(zt) = oz t(et): (21)
The Hamiltonian commutes with the momentum operator. If the momentum is sharply defined,
the solution of the above differential equation is

(2, ) = expli(pz — p*t/2m)]. (22)

If the momentum is not sharply defined, we have to take the linear superposition:

¥(z,1) = / exp {i (kz - Q%t) } g(k)dk. (23)

The width of the wave function becomes wider as the time variable increases. This is known as
the wave packet spread. , R

Let us study the transformation properties of this wave function. Rotation and translation
properties are trivial. In order to study the boost property within the framework of Galilean
kinematics, let us imagine an observer moving in the negative z direction. To this observer,
the center of the wave function moves along the positive z direction, and the transformed wave
function takes the form

1 ; 2
¥y(2,t) = exp[—im(vz — §v_2t)] /g(k — mu)e'kz-kt/2m) g (24)
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where v is the boost velocity. This expression is different from the usual expression in textbooks
by an exponential factor in front of the integral sign. The origin of this phase factor is well-
understood.

In nonrelativistic quantum mechanics, ¥,(z,t) has a probability interpretation, and there is
no difficulty in giving an interpretation for the transformed wave function in spite of the above-
mentioned phase factor. The basic unsolved problem is whether the probabilistic interpretation
can be extended into the Lorentzian regime. This has been a fundamental unsolved problem for
decades, and we do not propose to solve all the problems in this paper. A reasonable starting
point for approaching this problem is to see whether a covariant probability interpretation can be
given to light waves.

For light waves, we start with the usual expression

f(e,1) = % [ sty (25)

Unlike the case of the Schrédinger wave, w is equal to k, and there is no spread of wave packet.
The velocity of propagation is always that of light. We might therefore be led to think that the
problem for light waves is simpler than that for nonrelativistic Schrédinger waves. This is not the
case for the following reasons.

(1). We like to have a wave function for light waves. However, it is not clear which component
of the Maxwell wave should be identified with the quantal wave whose absolute square gives a
probability distribution. Should this be the electric or magnetic field, or should it be the four—
potential? .

(2). The expression given in Eq.(25) is valid in a given Lorentz frame. What form does this
equation take for an observer in a different frame?

(3). Even if we are able to construct localized light waves, does this solve the photon localization
problem?

(4). The photon has spin 1 either parallel or antiparallel to its momentum. The photon also
has gauge degrees of freedom. How are these related to the above-mentioned problems?

Indeed, the burden on Eq.(25) is the Lorentz covariance. It is not difficult to carry out a
spectral analysis and therefore to give a probability interpretation for the expression of Eq.(25)
in a given Lorentz frame. However, this interpretation has to be covariant. This is precisely the
problem we are addressing in the present paper.

6 Extended Little Group for Photons

The little group is the maximal subgroup of the Lorentz group which leaves the four-momentum
of a given particle invariant. For a massless particle moving along the z direction, the little group
is generated by [15]

J39N1,N27 (26)

~with Ny, = K, — J?, Ny = K3 + J, , where J; and K; are the generators of rotations and boosts
respectively. The above generators satisfy the commutation relations:

[N1,N;] =0, [J3, M1] = iN,, [J5, N2) = =iV, (27)

347



These commutation relations are identical to those of the two-dimensional Euclidean group.
In addition, we can consider K3 which generates boosts along the z direction. This operator
satisfies the following commutation relations with the above generators of the little group.

(Ka, o =0,  [Ka,Ni]=—iNy,  [K3,Ng] = —iNa. (28)

Since the operators Ni, Na, J3, and K3 form a closed Lie algebra, we shall call the group generated
by these four operators the “extended little group.”

The boost generated by K3 has no effect on Js, while changing the scale of Ny and N;. In
particular, if we start with a monochromatic light wave whose four-potential is

A*(z) = (4,0,0,0)'¢==) (29)

in the metric convention: z* = (z,y, z,t), the Lorentz boost generated by K3 leaves the above
expression invariant. Since N; and N; generate gauge transformations which do not lead to
observable consequences, we can stick to the above expression, and ignore the effect of N; and
N,.J; generates rotations around the z axis. In this case, the rotation leads to a linear combination
of the z and y components. This operation is consistent with the fact that the photon has two
independent components, which is thoroughly familiar to us. Therefore for all practical purposes,
A*(z) has just one component which remains invariant under transformations of the extended
little group. We can thus write A¥(z) as

A¥(z) = Az, (30)

While the group of Lorentz transformations has six generators, the extended little group has only
four. This means that the extended little group is a subgroup of the Lorentz group. How can we
then generalize the above reasoning to take into account the most general case? The choice of the
z axis is purely for convenience, and it was chosen to be the direction of the wave propagation.
If this direction is rotated, it is not difficult to deal with the problem. If the boost is made
along the direction different from that of propagation, then the operation is equivalent to a gauge
transformation followed by a rotation. Therefore, the extended little group, while being simpler
than the six-parameter Lorentz group can take care of all possible Lorentz transformations of the
monochromatic wave.

The above reasoning remains valid for the case of the superposition of several waves with
different frequencies propagating in the same direction:

Au(z) — zAiei(k.'z—u.'it)’ (31)

and the norm:

N = E | A2 (32)

remains invariant under transformations of the extended little group.
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7 Unitary Representation for Four—potentials

One of the difficulties in dealing with the photon problem has been that the electromagnetic four-
potential could not be identified with a unitary irreducible representation of the Poincaré group.
The purpose of this section is to resolve this problem. In Ref. [15], we studied unitary transfor-
mations associated with Lorentz boosts along the direction perpendicular to the momentum. In
this section, we shall deal with the most general case of boosting along an arbitrary direction.

Let us consider a monochromatic light wave travelling along the z axis with four-momentum
p. The four-potential takes the form

A*(z) = Attt (33)

with
Aﬂ = (A], Az, A3, Ao) . (34)

We use the metric convention: z# = (z,y, 2,t). The momentum four-vector in this convention is
" =(0,0,w,w). (35)

Among many possible forms of the gauge-dependent four-vector A*, we are interested in the
eigenstates of the helicity operator:

0 — 0 0
o _|* 0 0 0
=10 0 00 (36)
0 0 0 0
The tour-vectors satisfying this condition are
4 =(1,£4,0,0), (37)

where the subscripts + and - specify the positive and negative helicity states respectively. These
are commonly called the photon polarization vectors.

In order that the four-vector be a helicity state, it is essential that the time-like and longitudinal
components vanish:

This condition is equivalent to the combined effect of the Lorentz condition:
7]
E;A“(x) =0, (39)
and the transversality condition:
V.A(z) =0. (40)

As before, we call this combined condition the helicity gauge.

While the Lorentz condition of Eq.(39) is Lorentz-invariant, the transversality condition of
Eq.(40) is not. However, both conditions are invariant under rotations and under boosts along
the direction of momentum. We call these helicity preserving transformations. If we make a boost

349



L

along an arbitrary direction, this is not a helicity preserving transformation. However, we can
express this in terms of helicity preserving transformations preceded by a gauge transformation.
Let us consider in detail the boost along the arbitrary direction. This boost will transform the
momentum p to p’,
p* = By(n)p". (41)

However, this is not the only way in which p can be transformed to p’. We can boost p along the
» direction and rotate it around the y axis. The application of the transformation [R(6)B,(£)] on
the four-momentum gives the same effect as that of the application of By(n). Indeed, the matrix

D(n) = [Bg(m)] ™ R(0)B.(£) (42)

leaves the four-momentum invariant, and is therefore an element of the E (2)-like little group for
photons. The effect of the above D matrix on the polarization vectors has been calculated in

Appendix A, and the result is
D(n)A% = A4 + (p*/w)u(n, 0), (43)

where

—2sin(8/2) cosh(n/2)
cos(8/2) cosh(n/2) + \/(?08(9/2) cosh(n/2))* =1
Thus D(n) applied to the polarization vector results in the addition of a term which is propor-

tional to the four-momentum. D(7) therefore performs a gauge transformation on A4. With this
preparation, let us boost the photon polarization vector:

u(n,9) = (44)

A4 = By(n)AL. (45)

The four-vector A% satisfies the Lorentz condition p.AL = 0, but its fourth component will not
vanish. The four-vector A% does not satisfy the helicity condition.
On the other hand, if we boost the four-vector A} after performing the gauge transformation

D(n),
AY = By(n)Ax
= By(n)[B;'(n)R(6)B:(£))Ax
= R(o)B;(g)A;. (46)

Since B,(£) leaves A% invariant, we arrive at the conclusion that

A = R(8)AL. 7 (47)
This means
A = B,(n)D(n) AL = (cos 8, £i,—sin6,0), (48)
which satisfies the helicity condition:
A% =0, (49)
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and
p-AL=0 (50)

The Lorentz boost B(n) on A% preceded by the gauge transformation D(n) leads to the pure
rotation R(#). This rotation is a finite-dimensional unitary transformation.

The above result indicates, for a monochromatic wave, that all we have to know is how to rotate.
If, however, the photon momentum has a distribution, we have to deal with a linear superposition of
waves with different momenta. The photon momentum can have both longitudinal and transverse
distributions. In this paper, we shall assume that there is only longitudinal distribution. This of
course is a limitation of the model we present. However, our apology is limited in view of the fact
that laser beams these days can go to the moon and come back after reflection.

With this point in mind, we note first that the above-mentioned unitary transformation pre-
serves the photon polarization. This means that we can drop the polarization index from A*
assuming that the photon has either positive or negative polarization. A*(z) can now be replaced
by A(z). )

Next, the transformation matrices discussed in this section depend only on the direction and
the magnitude of the boost but not on the photon energy. This is due to the fact that the photon
is a massless particle [15]. For the superposition of two different frequency states:

A(z) = A e 4 fyerle=t) (51)

a Lorentz boost along an arbitrary direction results in a rotation followed by a boost along the
z direction. Since neither the rotation nor the boost along the z axis changes the magnitude of
Ai(: = 1,2), the quantity -

|A]? = |A]* + | A,|? (52)

remains invariant under the Lorentz transformation. This result can be generalized to the super-
position of many different frequencies:

Az) = Y Apeie==Y), (53)
k

with |A]? = ¥, |Ax)* .The norm |A|? remains invariant under the Lorentz transformation in the
sense that it is invariant under rotations and is invariant under the boost along the z direction.

Can this sum be transformed into an integral form of Eq.(25)? From the physical point of
view, the answer should be Yes. Mathematically, the problem is how to construct a Lorentz-
invariant integral measure. It is not difficult to see that the norm of Eq.(32) remains invariant
under rotations, which perform unitary transformations on the system. The problem is how to
construct a measure invariant under the boost along the z direction.

8 Localized Light Wavelets

For light waves, we use the form of Eq.(25). Let us write down the expression again.

fz,t) = \/% [ atkyeit==0ar. (54)
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However, the form commonly used in quantum electrodynamics is

Alz,1) = / \/ga(k)e'“f-w)dk. (55)

This is a covariant expression in the sense that the norm
[latk)(1 ). (56)

is invariant under the Lorentz boost, because the integral measure (1/w)dk is Lorentz-invariant.
On the other hand, the expression given in Eq.(54) is not covariant if g(k) is a scalar function,
because the measure dk_is not invariant. - )

It is possible to give a particle interpretation to Eq.(55) after second quantization. However,
A(z,t) cannot be used for the localization of photons. On the other hand, it is possible to give
a localized probability interpretation to f(z,t) of Eq.(54), while it does not accept the particle
interpretation of quantum field theory.

If g(k) is not a scalar function, what is its transformation property? We shall approach this .

problem using the light-cone coordinate system. We define the light-cone variables as
s=(z+1)/2, u=(z-1). (57)
The Fourier-conjugate momentum variables are
ho=(k-w), ko= (E+w)/2. (58)

If we boost the light wave (or move against the wave with velocity parameter ), the new coordinate

variables become
s’ =ays, v = a_u, (59)

where'ay = [(1 £ 8)/(1 F 8)]'/2 . If we construct a phase space consisting of s and %, or u and
k., the effect of the Lorentz boost will simply be the elongation and contraction of the coordinate
axes. If the coordinate s is elongated by ay, then k, is contracted by e_ with a,a_ = 1.

In the case of light waves, k, vanishes, and k, becomes k or w. In terms of the light-cone
variables, the expression of Eq.(54) becomes

flu) = (1/2m) [ g(k)e™dk. (60)
We are interested in a unitary transformation of the above expression into another Lorentz frame.

In order that the norm
[latk)ar (61)

be Lorentz-invariant, f(u) and g(k) should be transformed like
) - Varf(aw),  g(k) = aTg(a_k). (62)

Then Parseval’s relation:

J1f)rdu = [lg(k)Pdk (63)
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will remain Lorentz-invariant.

It is not difficult to understand why u and k in Eq.(62) are multiplied by a; and a_ respectively.
However, we still have to give a physical reason for the existence of the multipliers (a4)'? in front
of f(u) and g(k). They are there because the integration measure in Eq.(54) is not Lorentz-
invariant.

In Ref. [10], we argued from our experience in the relativistic quark model that the integration
measure can become Lorentz invariant if we take into account the remaining light-cone variables in
Eq.(57) and Eq.(58). Indeed, the measures (duds) and (dk.dk,) are Lorentz invariant. However,
this argument is not complete because the s and k, variables do not exist in the case of light
waves. In Ref. [16], Kim and Wigner pointed out that the multipliers in Eq.(62) come from
the requirement that the Wigner phase-space distribution function be covariant under Lorentz
transformations. ,

Let us illustrate the wavelet form using a Gaussian form. We can consider the g(k) function

of the form .
g(k) = (1/x6)"/* exp {~(k — p)*/26}, (64)
where b is a constant and specifies the width of the distribution, and p is the average momentum:
p= [ klg(k)dk. (65)

Under the Lorentz boost according to Eq.(62), g(k) becomes

(1/mb)/* &~ exp { —y/a=(k - V/arp)?/2b} (66)

We note here that the average momentum p is now increased to \/ayp. The average momentum
therefore is a covariant quantity, and a. can therefore be written as

a. =Q/p, (67)

where Q is the average momentum in the Lorentz frame in which a.. = 1.
As a consequence, in order to maintain the covariance, we can replace f(u) and g(k) by F(u)
and G(u) respectively, where '

‘ F)=\Ejw), Gk = \/gg(k). (68)

These functions will satisfy Parseval’s equation:

[1F)Pdu = [|G(k)dk (69)

in every Lorentz frame without the burden of carrying the multipliers \/ay and /a_.

9 The Concept of Photons

It is now possible to construct a localized wave function for a light wave with a Lorentz-invariant
normalization. This wave function is now called the wavelet. We shall examine in this section
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whether the wavelet can be used for photons. If the answer is NO, we then have to examine how
close the wavelet is to the particle description of photons.

Let us see how the mathematics for the light-wave localization is different from that of quantum
electrodynamics where photons acquire a particle interpretation through second quantization. In
QED, we start with the Klein-Gordon equation with its normalization procedure. As a conse-

quence, we use the expression: .
k) = —=a(k), 70

where a(k) is a scalar function. The Lorentz-transformation property of this quantity is the same
as that for G(k) of Eq.(68). .

However, the basic difference between the above expression and that of Eq.(68) is that the
kinematical factor in front of a(k) is 1/v/k in Eq.(70), while that for G(k) of Eq.(68) is 1/\/_ This
is the basic gap between wavelets and photons. The gap becomes narrower when the distribution
in k becomes narrower. .

Furthermore, we can use the concept of windows to sharpen up the localization. Instead of
leaving insignificant non-zero distribution outside the localization region, we can assume that the
distribution vanishes outside the region.

I have to do some more writing.
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Abstract

The theory of quantum effects in non-linear dielectric media influenced by pumping exter-
nal field based directly on Maxwell equations is developed. The diagonalisation of Hamilto-
nian of quantized generated field by the canonical Bogoliubov transformations allowed to ob-
tain the general expressions for the number of created photons and for the degree of squeezing.
As an example for the case of plane pumping wave the results are calculated in the zero order
of secular perturbation theory on small parameter characterizing the medium non-linearity.
The Heisenberg equations of motion are obtained for non-stationary case and commonly used
effective Hamiltonian derived from the first principles of quantum electrodynamics.

As it is well known for theoretical description of squeezed states the quantum treatment of
light is necessary. Consideration of the medium as classical one supposes some effective interaction
of the pumping and generated waves. For such description effective Hamiltonians were commonly
used. But the problem of correspondence between the Heisenberg equations which follow from
the effective Hamiltonians and the Maxwell equations for quantized electromagnetic field in the
medium was not investigated up to now.

The main contents of our paper is to treat the theory of quantized electromagnetic field propa-
gating in the medium with time dependent dielectric properties on the base of Maxwell equations.
This problem is quite analogical with the theory of quantum effects in non-stationary external
fields [1]. But in our case the role of "external field" is played not by the pumping field itself but
by the induced non-stationary dielectrical properties of the medium.

The non-linear medium is described by the tensors of dielectric sensibilities of second, third
and higher ranks which determinate the medium polarization produced by the electric field. In
the frame of semiclassical theory we shall decompose the whole electromagnetic field into the sum
of intensive classical pumping field Ep:(z) and generated by the medium quantized field E(z)

Ei(z) = Epg(z‘) + Ek(.r). (1)
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Supposing the pumping field to be more intensive then the generated one we can omit the terms
in the operator of electric induction which are higher than linear in quantized field. From the
quantized Maxwell equations in the medium the following integro-differential equation follows for
the operator of vector-potenhal Ag(:l') (we use gauge thh Ao = 0, &Ag(x) =0)

at( 'JatAJ)(z) AA'(I) e (2)
where
Ky=14L,;+N,, (3)
(LyE;Xz) = 4x / XP(e =, x)Ej(v, x)dt’, (4)
(N,,E (z) =8r / / Z}(t t —t"; x)Ep(t’, x)E;(t", x)dt'dt”. (5)

So we are resultmg with the problem of quantization in the external field which is included into
the kernel of the integral operator K.

The ground of secondary quantlzatlon is that the quantized field must be decomposed over the
complete system of solutions u,p (:z:) of the classical equation corresponding to the quantized one 2

Aye) = Y Iu3" (2)ar(p) + uif* (x)a} (p), (6)
[a0 (), 35(P")] = boorbpp. (7)

To orthonormalise the set of solutions it is necessary to introduce a scalar product (2]

(u,v)=s'/d°x/dr / 45 OKi r,;r_ r"»")[u;(f»x)%"'("’x)' a—é:,;“j'(f'»x)'i(",x)], (8)

(>, ") = o b (9)

Operators a,(p), a}(p) annihilate and create free photons in the medium when time tends to infin-
ity in the state with quantum numbers p,o. When time increases negative- and positive-frequency
solutions will be mixed which has the interpretation as particles-antiparticles creation. As the
consequence the role of photons in the medium will be played by quasiparticles which creation-
annihilation operators b7 (t), bs(t) (here a = (o, p) ) diagonalize the Hamiltonian of quantized field
in a moment t and which are connected with at, a, by the ca.nomcal Bogoliubov transformation

= Z[‘I’aa(i)ba(‘) + Wap(t)bF(t)]. (10)

The number of the quasiparticles created by the medium in a-state is

Na(t) =< 0-colB ()ba(t)l0-co >= 3~ #2,(6)¥a(t). (11)
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The degree of squeezing is defined by the value of dispersion of quadrature components

Xalt) = 3 (B2(0) + ba(8)) Xaa(®) = 5; (62(6) = bo(t) (12)
of by their linear combinations
Yiap = 3 QoaXia: (13)
The matrix of squeezing is )
S8 =< O-calYoa(t)a s )0-m >= Q2 F 1)* (8 9)Q7o, (14)

(here minus for s =k =1, plus for 1 = k = 2).

Let us apply the developed formalism to the quantum process of light generation [3]. We
shall suppose the non-linear crystal to be placed in a flat resonator without losses and medium
absorption [4]. To obtain solutions of 2 we shall decompose u (z) over the space harmonics of
resonator. The system of equations for the Fourier coeﬁcnents ca.n be solved by the perturbation
theory with the small parameter ¢

Xwp—w) | oy 15
1+ 4rx@(w) € (13)
Because of parametric resonance it is necessary to make use of the secular perturbation theory [5].

From the zero order solution it is easy to obtain the number of created by the medium photons
in n-mode

¢= SIEpoma.xI

Na(t) = |0a] sinh? Apet, (16)

where 0, and A, are some constants of the order of 1. From the matrix of squeezing it is seen
that the quadrature components dispersions grow exponentially at a large time. However there
is a time interval [0, tnmn] during which the dispersion of one of the quadrature components is
squeezed to the value less than the standard quantum limit &

thmn = leArctcmh e’*, sinhr, = |on), (17)
n
1 2sinh?r, 1
Snnmia = 4 el -1 < Y (18)

where o, is proportional to the difference between the sum of generated waves frequencies and
the pumping wave frequency caused by medium dispersion. So the frequency upset caused by the
medium dispersion destroys squeezing.

As it is commonly known, the diagonalization of Hamiltonian is equivalent to the solution of
Heisenberg equations. Now we shall introduce the Heisenberg operators of creation and annihilation
and deduce the equations for these operators for the case of non-stationary external field.

Simple differentiation of b,(¢) with the help of Bogoliubov transformation 10 provides that the
quasiparticles operators satisfies the following equation

ba(t) = Y {[8*(1)B(2) — FT()*()apbp(t) + [8F(1)W(t) = ¥T ()8 )apbf (1)}, (19)
p
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The operators of quasiparticles differ from the Heisenberg operators ca(t), cZ(t) extended to the
non-stationary case only by a phase [1]

{

cal(t) = e Mby(t),  B4(t) =2 / wo(r)dr, 7 (20)

-0

where w,(r) is the instant energy of quasiparticle. Remembering that in terms of Heisenberg
operators the Hamiltonian is also diagonal and with the help of 19, 20 we obtain the generalized

Heisenberg equations . )
a(t) = =tca(2), H()}+

Z -vO.(i) (Q"'Q ‘I’T‘I’.) +'O‘(')Cp(t) + e (1) (Q‘l'w \I'TQ.) ""(t)c*’(t)]. (21)
.

In the lumts when ‘time tends to mﬁmty Bogohubov coeﬂicwnts tend to constants and we are
resulting with the ordmary Heisenberg equations.

Inserting the expressions for the Bogoliubov transformation coefficients for zero order pertur-
bation theory into generalized Heisenberg equation 21 we obtain the following equation describing
the process of parametric generation of photons in n and | — n modes

¢n(t) = —=iQcn(t) 4 eAnlle -""'c, (1), ' (22)

where Q is the energy in mode n or I — n. It is clearly seen that this equation may be provided as
the usual Heisenberg equation ¢, = —s{cn, H] by the standard effective Hamiltonian (3]

Heys(t) = Qcf(t)en(t) + Qe (tdi-n(t) + eAnlBre ™2V} () n(t) + bne ™ en(t)ern(t)).  (23)

So the standard quadratic effective Hamiltonian is obtained as the zero order of secular pertur:
bation theory applied to the exact integro-differential equation which describes the propagation
of quantized electromagnetic field in non-stationary medium. The corrections to it also can be
obtained in the frame of exposed here self-consistent description of the process of squeezed states
generation based on the first principles of quantum electrodynamics.
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Abstract

The minimum uncertainty and other relations are evaluated in the framework of the
coherent states of the damped harmonic oscillator. It is shown that the coherent states of
the damped harmonic oscillator are the squeezed coherent states of the simple harmonic
oscillator. The unitary operator is also constructed, that connects coherent states between
damped harmonic and simple harmonic oscillators.

1 Introduction

Recently there has been a surge of interest in the minimum uncertainty state which is one of the
fundamental features of quantum mechanics[1]. Introducing the canonical conjugate variables for
the harmonic oscillator, position z and momentum p in the appropriate dimensionless units, the
coherent states can be described by a symmetric uncertainty in z and p with Ap- Az =1 and
Az = Ap = 1. From the restriction of the uncertainty principle, Az - Ap, we may consider a more
precise position Az < 1 and a more uncertain momentum Ap > 1. These states, i.e., one variable
1s squeezed at the expense of its conjugate, are called squeezed states or minimum uncertainty
states, which can not be obtained from the optical sources generating the coherent states[2], but
from two-photon coherent states(3] including ordinary coherent states as a special case. This kind
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of change in the variable corresponds to the measurement of either z or p in a rotating frame in
phase space. This new space is the quadrature phase, that is directly related with a homodyne or
heterodyne detection. Recently, two-photon devices have produced the squeezed states of light[4]
with high precision interferometers(5).

The two-photon coherent states or minimum uncertainty can be distinguished from a coherent
state in many ways, i.e., different photon processes, quantum statistical properties and coherence
properties. The coherent state can be generated from one-photon stimulated processes, while the
two-photon coherent states are generated from two-photon processes for two photons of the same
mode. For the photon annihilation operator with frequency w, we may define the coherent states
| @ > (a | @ >= a | a >), and for the case of a two-photon process, a self-adjoint operator
a = a, + ia; yields < Aa? >=< Aa} >= 1/4 for the coherent state | a >, as derived in Sec. 3
below. However, the states with a more precise quantity < Aa? >« 1/4 and a more uncertain
< Aa} > 1/4 are permitted by the uncertainty < Aa} >< Aa} >> 1/16 with minimum
uncertainty < Aa? >< Aa} >= 1/16. This indicates that the ordinary coherent states are
different from the minimum uncertainty.

The purpose of this paper is to show that our previous results[6] of the coherent states for
the damped harmonic oscillator (DHO) are the squeezed states of simple harmonic oscillator
(SHO). Introducing the Caldirola-Kanai Hamiltonian([7], we review the propagator, wave function,
uncertainty relation and coherent states[8] of the Caldirola-Kanai Hamiltonian in Sec. 2. In Sec.
3 we define the self-adjoint operator and construct the coherent states for DHO. We determine the
properties and structure of the unitary transformation of the coherent states of DHO and SHO in
Sec. 4. The results and discussion will be given in Sec. 5 together with graphs.

2 Propagator and Wave Function of DHO
We introduce the Caldirola-Kanai Hamiltonian for DHO as

T S
H=e, -2;+C -2-"&)0717, ] (l)

where 7 is the positive constant. As we have developed the quantum theory or damped driven
harmonic oscillator by the path integral method(8], the propagator and wave function of DHO are
given as

. 11/2
) _ mwe¥ ﬂ 2 _ v 3
K(z,t20,0) = [2rihsinwt] exp(4h {r(zo - €"')
s::::”t((:lrze"1 + z8) coswt — 2e¥ z20)}] , (2)
Wn(z,1) = e Ho(D (n + 2)cot (2 Az? 3
,.(:c,t)-m w(Dz)exp [—:(n+§)cot (-2‘—”+cotwt)- z] , (3)

where
1/2
w = w,_-y_’ /
0 4 3
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v = [T

2 _ i s 2 e I
£t = 203 o wt+2wsm2wt+l, (4)
Alt) = %‘;{lﬁ-i[(8%’3-+%)sin2wt+;—:sin2wt]} )

mw\Y/? ¥

D(t) (T) ok

To construct the coherent states (| a >) for DHO, we define the annihilation operator a and
creation operator a' as

a = %(’73-#?)» (5)
at = %(#'p-n'z), (6)
where u(t) and n(t) are
u(t) = -12-(ReA)"/2exp {icot"l (2—‘:)- + cotwt)} , N
n(t) = \/Eih%exp{icot" (-2“7: + cotwt)} . (8)

Equations. (5)-(6) satisfy the commutation relation [a, a!] = 1, which corresponds to [z,p] = ih.
The coherent states in the coordinate representation | z > can be expressed by

laf? -1“—'02] . 9)

1
<z|a>=2rup’) Viexp [——-—212 + 32— 25

1
2h pu i 2

With the use of Eqs. (5)-(8) the uncertainty relation can be easily obtained as

(Azp) = |ullnl=5A()
2y 1/2
= g{l+ [(%+Z—)> sin’wt-{-&—lsin%t] } (10)

Here, Eq. (10) is the minimum uncertainty corresponding to the (0,0) states. All of the formulas
derived above reduce to those of simple harmonic oscillator (SHO) when 4 = 0. The propagator
[Eq. (2)] has a very similar form to those of Cheng(9] and others[10], but Eq. (3) is of a new form.

3 Two-Dimensional Self-Adjoint Operators

We introduce the dimensionless two self-adjoint operators

a=a,+ia;, a6, =al, a3=a} (11)
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and the corresponding eigenstates
| a >=| a; >; +t | az >3, (12)

where a; and a; are real. We refer to (a;,a3) or (1, 3) as the quadrature components, and the
relation between Eqs. (11) and (12) are given by

aleg> = o>,
(13)
asz I Qaz > = az l ag >3 .
Using Eqs. (5)-(6) we may express Eq. (11) as
l [ ] L]
o = l(n—n")z+ (" - #)p) (14)
1 . .
a = sel-(n+n7)z+(k+u)pl. (15)
Rewriting Eqs. (14) and (15) as the representation of z and p, we get
(+#7)ar =iy = p")az , (16)
p = (n+na—i(n—na. (7

With the use of the wave function expressed as Eq. (3) and through the following definition
< Aaf Smn=< (a;— < a >m,n)(al- <a >m.n)- >mn oy (18)

we obtain the uncertainty relations at various states as

< Aad >ap2a< Aad >npan = 11—6(n +2)(n+1) min, % , (19)
<Add > aa<dad>un = 11—6(11 +1)? miny % . (20)
< Aa? Spn< Add San = Tlé(2n +1)2 1'16 , (21)
<Add > n< A >0 = -l%n’ min, % ; (22)
<A@ >p3.< Ad} >aczn = 1_16"(" -1) 2 % . (23)
Averages in the coherent states can be defined as
| | <ala|la>=<a>=a, (24)
and thus we have 1
<ay >= i(a +a')=ao, (25)
<a;>= %(a' —a)=a;, (26)
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< a;al > = o+ z ’ (27)
<aje;> = ai+ % , (28)
<Adl> = <Add>= % , (29)
and the following a; representation
2 1/4 2 i
<ay|a>= (;) exp [-(a; —a)+ 4-azma] , (30)

where a; | a; >=a} | a >.

4 Unitary Transformation

Now we will construct the unitary operator that transforms the coherent states for SHO to that
of the two-photon coherent state of DHO and vice versa. From Eqs. (5)-(6), we can easily show
the relation

a = vag—Aa}, (31)
a' = <Xao+va}, (32)

where the expressions of ao and a} by a and at are

a = v'a+lal, (33)
a) = X\a+va, (34)

for a pair of numbers A and v satisfying
lvP=|2P=1. (35)

We take the values of v and A as the following:
T |
R AT Y. = &
1 w pfw
- BT oW e
% woe woe + (1 —ty/1 - 8?)| exp |icot (2w+coswt)

1 wo £ w t
= - e ¥ l i - (=¥ - _7_ i
5 [ —e (2w sinwt + coswt) che (coswt 50 sin wt) (36)

1 wo -3 w oy v, ,
Z |y = t— =¥ (1 t
-I—2 [ —e 7Tsinw ‘/woe (s sinwt + sinw )J

1 [wf ¥t w 21/2 . 1, 7 VI—E
= —|—eM424 — tH (— twt) + tan™! | 7———
% [we + +woﬂ exp |ico (2u+cow)+ an (“’°e""+l) ,

[
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™Muwo . 1
A= o T ek ’ ,

% ici’ L—%c"" -(1+4 i\/l_——ﬁ’)] exp [i cot"‘(-z‘:: + cotwt)]

l wo _x "’ . w ] 7 v
= - ‘/__  J - /_. ¥ -
= 3 [ —e (= sinwt + coswt) . (coswt sin wt)] (37)

. 0 ¢ 2
+i [ %e'i! sinwt — dwioei'(i-’-; sinwt + coswt)]

2 Wo vi- & )] ‘

= L [— 2+ iﬂ’}m exp |icot™! (s + cotwt) + tan™! [ S——
= % lw @ P % @i |

Since a canonical transformation is defined as any transformation which keeps the commutator
invariant, we can confirm that the transformation of variables from (ao, a}) to (a,a') given in Eqgs.
(31)-(32) and (35) is a canonical linear transformation. According to a theorem of Von Neuman-
n{11], there exists a unitary operator U, which yields all the linear canonical transformations,
i.e.,

b(ao, al) = UaaoU! = vao — Xad . (38)

The commutation relation |{a,a'] = l] and unitary transformation [Eq. (38)] provide a with
properties exactly similar to those of ag. Therefore, we may obtain the usual properties of a as

N = d'a, (39)
Nin> = n|n>, N|0>=0, (40)
In> = Us|n>o, (41)

and a coherent state for DHO is given by
|0>=Ua|a>05 (42)

where | o >¢ is a coherent states for SHO. The representation of coherent states for DHO in the
SHO space is given by

1 1 A A1,
exp[-"2'lcrtl2 ~5 | ao ? +2u.°g-'2'u—.+;°‘ “0] , (43)

1
<0|0>o=?
V'

where the coefficients are

1 V%

\/;: (2+%e-¥+ﬁﬂ2)l/‘ y
4. = tap-! [ (z sinwt + cos wt)y/BF -1 +£fe"" + 1)sinwt
Y (B¢ + L sinwt + coswt)(Re~" + 1) — sinwty/B7—1] '

A 1 2,-7t _ 9, 292\ /2 —
R~

2 wie™ " + 2ww + w32 22— (B)le~
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A1 wie™ — 2wwg + W?P? 172 . [2me BT -1
= i\t Tt TP B @re )
l 2€ eizh

v (24 meF 4250

The wave function < n | a > for a coherent state of DHO in the state of SHO can be obtained

from Eq. (43). Using the following formula with the nth Hermite polynomial,

X Ha(z
et = Z—';(' )t" , |t|< oo,

n=0

and through the similar derivation of Eq. (9), we can easily obtain

_ 1 VX wie™™ — 2w +wiB? 'S
T V2l (Be + 24 £6%) [wie™ + 2wwp + w?B?

X Hal(~20) Vil exp(— | ! =5 %),

o<n|a>

where the coeflicients in Eq. (46) are given as

1/4
(2N = o [(5'—'°-e"‘ +24 (e - 24 iﬂ’)] e,
28 | w wo w Wo

) tan-! - VE =1 + sinwt
v VE-1-A,sinwt’

A V@B T =i - 2w 4 [(Ber 1 1) 41 - B
vha = — ,

Bm\

B = (%e"wl)(%e-"'—1)—(%e-*'+1)’\ﬂ%e-~'-1)2+1-m

—(Re 4 1) sqre(Re" — 1) 41 B2
W w

ARt -1 41— (R 412 41 - 7.
If we represent the annihilation operator ao in the state of DHO, we get
<ap>< al|ap | a>=v'a+ Ao’ = ag +1a437,

from the definition of Eq. (18) we obtain the quantities

< Ad, > <al(an—aa)|a>
1

= glv+rp

= Mo 12

lh)o -t 2
i §,
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1
<Add,> = Zlu—Al"'

1 2
T 2muh In]
1 w, ﬁ’
< Aa}, >< Ad}; >= Eﬂ’ , (51)
<Aal> = } A
- 1/2
= eMo24 2 ’] . 52
2% [ uoﬁ (52)
The repetition of representation for the annihilation operator a in the state of SHO yields
<a>y = <doIaIao>=uao—Aa55ah=a;.1+iahg, (53)
<Adl>; = <aol(a1—am)|a0>,
= 1 | = A
= l “o - - 7 ]
= 3 [ e " sin wt+woc (coswt 2wsmwt) (54)
< Aag >0 = % l + A I
1 - 2, Y .2 7
= 3 [ " ——smwt + coswt)’ + w—oe" sin wt(m +1)] , (55)
1 wo _. 7 .
< Adl >9< Add >y = E{[:e "'(-2; sinwt + coswt)?
2
Yem - X X in wil?
+ woe (coswt 2Wsmu.rt)(zw2 + 1) sin wt] (56)
43
+ [cos vt — 2«;3 — sin’ wt)’} ,
<Aad’>; = |A)
1 o --yt 2
(e =24 2470 (57)

~ In Eq. (42) we have defined the unitary operator that is a linear canonical transformation.
From this equation we have

<@ |B> = <a|UL|Bo>
Up(Bo,a3) < a0 | B> . (58)
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A direct application of the following formulas{12]

ec‘Acc’BcCaC = exp(aAd+ B +cC + %{clc;[A, B] + clc;,[A, C] + Czcs[B, C]}

J

+ [A, A’A..., A,[B, E.'., B,C)--- __c;_d)_q’— 59
SEAA - AEE RO Gy )
1ol gntacann® = exp{cia'? + za’a + c3a® - (a" + a'a + aa' + a?)
o (_94 i)
+Y (. i) '[—2c,c3(ata + aa') + 8c¢csat’)}
2¢y _ -2c3 __
= expl(c: — 8cfc;e 1 C]Cg)atz(Cg - ac+ 2 cae ! Jala (60)
262 203
e"k’ - 1 ' 2
+(—61C3 + 26103-————)00 + (C] - CgCa)a ]
262
gives the unitary operator in the | a >¢ representation,
n ™ 1 A o2 1 : » A'
U{ Nao,0f) = Wexp [2_ua° + (-; - 1agao — 2—,,‘1‘2’] (61)
1 A A
= Tor exp [Eaf —lnvalao - -2—Vag] (62)
I v
= N exp [A.,a(',2 + Bualao + Cuoa) + D..a?,] , (63)
where the coefficients are
) 2( A\ (A 1=4
A = EZ*EZ"“’*E(E?) ('2—) oy
A
= - — Aedv (] — 3
B. lnv 21nv(l v), (64)
AA°
= —aw (]2
Ce 2lnu(1 V)
A

= —dr (1 -7,
D. Zlnu(l V')

5 Results and Discussion

Starting from the coherent states of DHO, we have shown that these states are the squeezed states
of SHO and vice versa. We have also evaluated the averages of the operators ao,a,Ada? and Aa}
in both spaces of DHO and SHO. We have constructed the unitary operator which transforms the
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B(t)

FIG. 1. 3(t) as a funtion of wt at various values of z = v/w.

coherent states (] @ >o) to the coherent states ( | a >), i.e., | a >= U, | a >¢.

Figure 1 illustrates the behavior of 3(t) [Eq. (10)] as a function of t and z = y/w. As z
increases, the amplitude of the oscillation becomes large. For the condition v €« wg, w ~ wq and
v — 0, 5(t) approaches to unity, with DHO reducing to SHO. Therefore, the uncertainty relation
for the (n,n) state [Eq. (10)] oscillates with the period .

From the definition of the self adjoint operator and Eq. (18), we have evaluated the minimum
uncertainty for various states in Eqs. (19)-(23). The minimum uncertainties for the diagonal and
first off-diagonal states have the value of 1/16, and the minimum values for the second off-diagonal
states are 1/8. For < Aa? >« 1/4, the corresponding canonical part results in more uncertainty.

The creation and annihilation operators (a* and a) in Sec. 4 can be shown under the condition
| ¥ | = | A |*= 1. The operators (a/, ao) are transformed to the operators (at,a) through unitary
operator U,. The behaviors of | v | and | A | are depicted in Figures 2 and 3, respectively. We
can confirm that | » | oscillates periodically in general, but | A | behaves in a more complicated
fashion, and as z = v/w increases to larger than unity, the oscillation decays rapidly .-

The average of Aaj, and Aa, in the states of DHO are given in Eqs. (49)-(50). < Aa?, >
oscillates with exponential decrease, while < Aa?, > does so with exponential increase. The
minimum value of < Aaj, >< Aad;, > is 1/16 at A(t) = 1. The averages of Aa? and Ad? in the
space of SHO are evaluated in Egs. (54)-(55). The uncertainty relation [Eq. (56)] has a minimum
value of 1/16 at t = sin™' nr or t = cos™!(y/2w—4w/7), and maximum value at 3% = (wp/w)?e~?"
(Figure4). o o -

Equations (61)-(63) represent the unitary operator which transforms | a > to | a > and vice
versa. Therefore, we can obtain the scaled state through < z Ja >=< z | U | a >o.

In conclusion, we have shown the uncertainties and their relations in the states of SHO and
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Al

FIG. 2. | v | versus wi at various values of v/w.

1.0+ l=10
0.8}

0.8}
o4\ "
[X]

0.2
0.4

FIG. 3. | A | versus wt at various values of v/w.
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0.8

0.4

< (Aa))! >9< (Ae3)? >4

0.2

FIG. 4. Uncertainty relations versus wt.

DHO. We have also shown that there exists a unitary operator to connect the coherent states of
SHO with those of DHO.
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Abstract

We show that the probability distributions Pa(q,p;¥) := |(n|p,q; ¥)|?, which are obtained
from squeezed states, obey an interesting partial differential equation, to which we give two
intuitive interpretations: as a wave equation in one space dimension and also as a pseudo-
diffusion equation. We also study the corresponding Wehrl entropies S,(y), and show that
they have minima at zero squeezing, y = 0.

1 Introduction

This talk is based mainly on a work which was done in collaboration with Salomon Mizrahi
from Brazil.

Squeezed oscillator states are defined in terms of the bosonic creation and annihilation op-
erators, @' := Ja(z — £),anda:= H(z + 3 £), as follows:

|2;€) = Ip, q; €) 1= D(q,p)S(E)I0), where z:=(q+ip)/V2, (1)

and |0) is the ground state of the harmonic oscillator. Both D and § are unitary operators. D
creates the coherent state, and is defined by

: a
D(g,p) = explza’ - 2"a) = explipz ~ 951 (2)

and S(£) is the squeezing operator:

1 .
$(§) = exp[-(fa’2 ~£a%), (3)
where £ is a complex variable. For ¢ = 0, we recover the ordinary (unsqueezed ) coherent states.
The squeezed states satisfy the completness relation, [|p,q;&){p,¢; ¢ | €292 = 1, for every £.
Therefore, ind
9 _
[Plan® TE=1, where Pulg,pit):= ip.giélnil”, (4)

where |n) is the number state. If we interpret the real parameters ¢ and p as the position and
momentum variables, then (4) allows us to interpret the non-negative functions P, as proba-
bility distributions in the (q,p)-phase plane, for every n and §.
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In this talk, I shall consider these P, for real values of the squeezing parameter £, which will
be denoted by y. In particular, I shall show that the P.(g,p;y) satisfy the mterestlng partial
differential equations (9) and (12) , to which two intuitive interpretations can be glven Finally,
I shall show that the Wehrl entropy S.(y) (14) of the P, must have their minima at zero
squeezing, y = 0.

2 Explicit Form of the Distributions P,

The distribution P.(q,p;¢) := |{(n|p, ¢; £)|? gives the probability of finiding n bosons (photons)
in the squeezed states |q,y; £). It is a physically important quantity, and it has been calculated
by different methods. The dependence of P »(4,p; £) on n was studied by Schleich and Wheeler
[2]. For ¢ =y, the P, is given by the followmg comphcated expression [1,3,7):

2 +
P(0,5:9) = |(p, G yIm) =2—"L|H,.(z,n;w>|’ exp [—q——”l] n20, (5)

nl(y+1) 1+«
where ] +
= e = ;7 and w:=2 17p 6

and where H,(2,7;w) are the generalized Hermite polynomials (GHP ), which are defined in
terms of the raising operatores R(a, f;z) = az — fZ , as follows [1]:

] ma '
Bulafin) = Rr(a i) 1= 3 o (—";—ﬁ) (o). )

These polynomials are equal to the standard Hermite polynomials for a = 2 and § = 1. In the
limit, 8 — 0, these H,(z) becomes simple powers of z: H,(a,0,z) = a™z". Therefore, in the
limit of zero squeezing, ¥ — 1, we have  — 0, so that the above GHP ’s become simple powers
of w. Thus, for y — 0, equation (5) gives the following well-known Poisson distribution of the
unsqueezed coherent states:

n 2
P.(¢,p;0) = ;n! exp [—%] , n>0, where p?:=¢%+p?, (8)

When discussing probability distributions, it is useful to think of the regions that are surrounded
by the equipotential curves, P,(g,p;y) = const. ; I shall call these regions potential regions.
Thus, the potential regions of the above Poisson d1str1butxon P,(q,p;0) are concentric circles in
the (q,p)-plane. But for y # 0, these regions will have approximately elliptical shapes, whose
the major axes lie along the p-axis for y < 0 and along the q-axis for y > 0. These regions
become more elongated in one direction and narrower in the other, as |y| increases.

3 The Partial Differential Equation for the P,

Smce the integral (4) of the d1str1butxons P,(q,p;y) over the whole (q,p)-space remains con-

stant under squeezing, it is useful to think of the change of P,(q,p;y) as functions of y as a
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redistribution of probability densities in phase space, which maintains the positivity condi-
tion Pu(q,p;y) 2 O for all y. This redistribution of the P,(g,p;y) is governed by the following
interesting and amazingly simple partial differential equation:

] 188 18
3y P(@pv(m) =5 (a_q’ - ?a_;ﬂ) Po(g,piy(7)),  where y:= ¢, (9)

This equation was originally obtained (1] by straightforward but lengthy differentiation of the
expression (5) , and by using the following property of the GHP [1]:

0 1 9

a—an(a, ™ w) = _Zm

However, we can now derive it by two other more general methods [5], as reported in the
summary section.

ﬁn(a:ﬂ’ w) . (10)

4 Interpretation as Wave and Pseudo-Diffusion Equa-
tions

I shall now present two possible intuitive interpretations of the above differential equation:
(I) D’Alembert or Wave Equation: The following is a new interpretation, which was

not discussed in [1]: For a fized squeezing parameter y, equation (9) looks like the wave
equation for one space dimension ¢, if we think of the p variable in (9) as the time variable

t:
0? 1 62 10
(a_q2 - g@) ®(q,t;y) = —4d7p(g,t;y), where p(g,tiy)= —;EPn(q,t,y(*r)),
(11)

In this interpretation, the parameter ¥ would then play the role of the speed of light c(n) in
matter, which depends on the parameter y, similar to the dependence of ¢(n) on the index
of refraction index n. If the P, are thought of as electromagnetic potentials $(g, t; y), then
4%P,‘(q,p; y(7)) will play the role of a time-dependent charge distributions —47p(g, ¢;y).

(II) Pseudo-Diffusion Equation: By substituting % = 26“@% into (9) , we obtain a more
symmetric differential equation for the P,:

0 1 0? 9?

= Pu(g,piy) = 5 (€55 -5 | Pula,psy) . 12

s Pamn) =3 (- 2 Pary (12)
This equation is also new and permits a more pertinent intuitive understanding of the
redistribution process of the P,, by comparing (12) with the diffusion equation in two
dimensions [6]:

2 2

0 0 o)
sTant =7 (254 57) Tam), (13)
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where o is the diffusion coefficient. Equations (12) and (13) are similar, if we interpret
the squeezing parameter y as the time variable. However, the two equations differ in two
interesting aspects:

(1) The sign in front of £ in (12) is negative rather than positive. Such a “negative
diffusion coefficient” leads to “ infusion” rather than diffusion in the p-direction. Con-
sequently, as y increases, the equi-probability curves, P,(g,p;y) = const., move towards
the origin along the p-axis, but away from the origin along the g-axis. Therefore, we ex-
pect the probability regions to be concentric elongated “quasi ellipses” which are extended
along the p-axis for y — —oo. They become more and more circular as y approaches zero,
and then stretch outwards along the q-axis, as y — co. For the above reasons, we shall
call equations (9) and (12) “pseudo diffusion equation”.

(2) The “diffusion coefficients” exp[2y}/2 and — exp[—2y]/2 and in front of a%’; and 561% in
(12) depend on y. For y — +00, the term letv & P, dominates the r.h.s. of (12) , whereas
for y — —o0, the second term dominates. This dependence on y can be given an interesting
intuitive explanation: Let us consider the redistribution process when y is very large: In
this case the probability densities P.(g,p;y) are extended in the g-direction and tightly
squeezed or compressed in the p-axis, which makes it difficult to compress them further
along the p-axis. For this reason the “infusion coefficient” becomes so small, namely
x exp[—2y]- In contrast, the diffusion along the g-axis must become faster and faster, in
order to diffuse all the incoming density flux from the other orthogonal p-direction, which
is entering the cigar-shaped potential regions through their lengthy boundaries.

5 The Wehrl Entropy for the F,

A useful measure for the information content of the probability distributions P.(g,p;y) is the
Gibbs or Wehrl entropy [7], which is defined by

dpd
Sa(y) = -/P..(q,p;y)ln P.(¢.p;y) %—q- : (14)

Because of the symmetry P.(q,p;—Yy) = P.(p,q;y), the entropy (14) is even in y: S.(-y) =
Sa(y). Therefore, at y = 0 each Sp(y) must have either a maximum or a minimum. We shall now
argue that S,(0) should correspond to a minumum: We assume that S.(y) does not oscillate
as a function of y. Therefore, it is enough to argue that Sn(y) grows with |y| for large values
of |y| . For large positive y, equation (12) behaves essentially like a one-dimensional diffusion
equation in the g-variable. But it is well-known that the solutions of diffusion equations lead
to entropies which increase with time [6]. Therefore, the S,(y) must increase as y — oo. But
since the S,(y) are even in y, they must also grow as y — —oo. Hence, the S5n(0) must lie at
the bottom of the curves S(y) vs. y.

Finally, we note that the von Neumann entropy S.n(p) := —=Tr(plnp) for the pure states
p := |n)(n| must vanisch. In contrast, explicit calculations of the Wehrl entropies of the Poisson
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distributions (8) shows that 5,(0) > 1 for all n, in accordance with a conjecture by Wehrl [7],
which was proved by Lieb [8].

To summarize this section: in contrast to diffusion equations, where the entropies of their
solutions always increase with time, the entropies S,(y) for the solutions of the above pseudo-
diffusion equation first decrease monotonically as y grows from —oo to zero, but then increase
monotonically as y grows from zero to +o0.

6 Summary and Outlook

Two equivalent partial differential equations (9) and (12) were presented and then interpreted,
as wave and as pseudo-diffusion equations. The probability densities P,(g,p;y) (5) provide
infinite number of their solutions.

By the time of writing the present lecture notes, we succeeded in proving, by two general
methods, that the expectation values (g, p;£|O|g,p;€) of an arbitrary operator O, satisfy a
generalized version of the above partial differential equations, which also include rotations, i.e
for the general squeezing £ = re'. Interesting examples of O are the number operators N and
N?; their expectation values provide the simplest solutions of (9) and (12) . Also the projection
operator |g,p; £){(q, p; €|, and consequently its Wigner function, satisfy these equations.
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1 Introduction

The standard approach of quantum statistical mechanics uses the density op-
erator p to describe the (mixed) state of the physical system of interest. Since p is
an 6pefator in the Hilbert space,we usually need some 7f;3§£esentation to perform
the practical calculations. There are many equwalent representations in the lit-
erature, e.g., the coordinate repr&sentatxon P—repr&eentatlon Q-representation,
Fock space representation, Wigner function and characteristic function (Chi func-
tion hereafter), etc. In this paper we will use the last two representations since
they provide a “phase-space picture” for the quantum-mechanical problems [1].

In quantum equilibrium statistical mechanics, a system (A) immersed in a heat
bath (B) with temperature T is described by the canonical ensemble. According
to ensemble theory, the‘d’ensity' operator is:

. _exp(=pH)
7 Trlexp(—pH))’ @

where 8 = ;& is the inverse temperature and H is the Hamiltonian of (A). The
structure of (B) and the interaction between (A) and (B) are irrelevant to the
density operator. If H is (inhomogeneously) quadratic and with a finite number of
degrees of freedom, the densxty operator will correspond to a finite-mode thermal

7Squegzed Coherent State (SqCS) [2).

In qua.ntum non—ethbnum statistical mechanics, ensemble theory is no
longer valid and we have to build a model for the heat bath (B) and consider
(A)+(B) as a total system. The total Hamiltonian then contains three parts—
the Hamiltonian of (A) and (B) and the interaction Hamiltonian.

It is well known that the number of degrees of freedom of a heat bath must
be infinite (the thermodynamic limit), otherwise, due to the Poincaré recurrence
theorem there will be no phenomena such as approach to equilibrium, damping
or dissipation. The simplest model of a heat bath is an assembly of infinitely
many harmonic oscillators with linear couplings to (A). In this kind of model,
the total Hamiltonian is quadratic if the Hamiltonian of (A) is quadratic. Since
for quadratic Hamiltonians we have a phase-space picture of quantum mechanics
with the help of Wigner and/or Chi function, we can construct an infinite-mode
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(pure) SqCS for the total system in an infinite-dimensional phase space using
these functions. After reduction, i.e., ignoring the heat bath but keeping its “in-
fluence”, we will get a finite-mode SqCS for (A). In the limit as time approaches
infinity, it can be shown that (A) will approach equilibrium, and the finite-mode
SqCS will become a thermal SqCS consistent with the fluctuation—dissipation
theorem [3, 4, 5, 6, 7, 8].

In this paper we introduce a geometric interpretation of these non—equilibrium
phenomena via the Chi-function representation of infinite-mode SqCS. In Sec. 2
notations, conventions and a lemma on matrix are introduced for the mathematics
used in this paper. In Sec. 3 we study finite-mode SqCS’s by Wigner and Chi
functions and then extend them to infinite mode. In Sec. 4 we use the quantum
Brownian motion as an example to illustrate geometrical reduction in phase space.

2 Mathematical Preliminaries

Throughout this paper, % is set equal to 1; “T” denotes the transpose of a
matrix and “—T”denotes the inverse of the transpose of a matrix. The phys-
ical system under consideration is of N = n + 1 degrees of freedom, where n
is either finite or equal to infinity. The symbols £ = («°,z',2%,...,2") and
k = (K k',k%,...,k") denote the N—dimensional canonical coordinate and mo-
mentum respectively, thus ' = (&; E) is a vector in 2N—dimensional phase space.
g and p denote N—dimensional position and momentum operators corresponding
to the canonical variables # and k.

The metaplectic group Mp(2N,R) is an N(2N + 1)-dimensional Lie group.
It is the quantum analogue of symplectic group Sp(2IN,R). The elements of the
Lie algebra of Mp(2N,R) can be organized as anti-hermitian operators in the

following form:

. i . ) o
o(m) = 3 Z [0i;8:4; + Biibid; + Yii (Gib; + D5 di)]

1,7=0
iz VY zaAT
= ~(§p ( ) q;p
i 2
= g(q;p)Jm(q;p)T, (2)
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where a;; = aji, Bi; = B; and

—~T
m = ( 7 ﬁ) € sp(2N,r) (3)
a oy
is a 2N x 2N real matrix [9], while
o 1 . .
J= ( 1 O) , 1= N x N unit matrix. 4)

The Lie algebra of Mp(2N,R) is isomorphic to that of Sp(2N,R). The action
of exp[®(m)] € Mp(2N,R) on (§; ) is:

expl&(m))(§;5)" expl~&(m)] = exp(-m)(&5) T, (5)
where exp(—m) € Sp(2N,R).

Lemma [10]
If M is a symmetric and positive definite 2N x 2N matrix, then there exist
two matrices 51,52 € Sp(2N, R) (but not unique), such that

w 0 w? 0
M= T = T
Sl (0 w)sl 52 (0 1)S2a (6)
where w = diag(u)o,wl,wg,. eyWn), wy > 0 for all j, and
S w0
= () )5 )

Remarks:

(1) S € Sp(2N,R) if and only if STJS = J by definition.

(2) w;’s are not eigenvalues of M in general. We will call them the “symplectic
eigenvalues” of matrix M.

(3) The eigenvalues of JM are tiw;’s, hence we can calculate w;’s from JM
as an ordinary eigenvalue problem.

(4) If the matrix C; corresponds to a 2—dimensional rotation on the

(z;,k;) plane, then

55 o)emae(i)-62) @

Therefore S; in (6) can be replaced by C;S; and hence is not unique.
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3 Squeezed Coherent States in Phase Space

3.1 Wigner Function

The Wigner function of an N-mode density operator g is defined as [11, 12]:
W(@E) =N [~ dfexp(2iF - P)p(E — §,2+), ©)

where p(Z,z') is the coordinate representation of the density operator .

The Wigner function is real and normalized by definition:
/ ~ dZdEW (#F) = 1. (10)

However, it is not always positive—definite and is thus called the quasi—probability
distribution function over the “phase space” z' = (Z; E)

If the density operator is an exponential of a quadratic form of position and
momentum operators, then the Wigner function is a Gaussian distribution in 2"

W(3) = Cn exp[—(Z— Z)M(Z - 2)7). (11)

where Cy = 7~V /det(M) is the normalization constant, Z, is a constant vector in
the 2N—-dimensional phase space, and M is a symmetric, positive definite matrix
with all its symplectic eigenvalues smaller or equal to 1. (Otherwise (11) will not
correspond to a physical state.) The Gaussian Wigner function (11) corresponds
to the multimode thermal SqCS in general [2]. It contains the ordinary coherent
states (when M is a unit matrix) and the ordinary SqCS (when all the symplectic
eigenvalues of M equal to 1) as special cases.
The “Wigner ellipsoid” of (11) is defined as:

(- 2)ME-Z)T =1, (12)

which is an ellipsoid in the 2N-dimensional phase space with its center at z, and
its shape determined by M. We can take the Wigner ellipsoid as a geometric
representation of the Gaussian Wigner function.
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3.2 Characteristic Function (Chi Function)

The Chi function of a density operator j is defined as:
x(& ) = Tr[pD(~%;~F)), (13)

It can be shown that Chi function is the symplectic Fourier transformation of

the Wigner function:
X&) = / * dDdRW (' B) exp[~i(# - k — B - £)]. (14)

The normalization condition of the Wigner function corresponds to x(0;0) =1
in the Chi function. Since the operator D(~Z; —k) is unitary, x(; k) is complex
in general.

The Chi function which corresponds to the Gaussian Wigner function (11) is
also Gaussian:

x(3) = exp[—%ZJM"JTET +i5I5T). (15)

Analogue to the Wigner ellipsoid, we can also define the “Chi ellipsoid” for a

Gaussian Chi function as:
EF-Z)YIMUT(Z-72) =1 (16)

The center of Chi ellipsoid is the same as that of the Wigner ellipsoid, while the
shape of this ellipsoid is determined by the matrix JM -gT,

3.3 Mean Vector and Covariance Matrix

For an N-mode (mixed) state with the density operator g, the mean vector
is defined as ({(§); () in the 2N—dimensional phase space, where (§;) = Tr(5¢:),
etc. The covariance matrix is defined as a 2N x 2N matrix of the form:

U
(QT 3), (a7
Ui; = (6 — (@) — {@;))) = (§:45) — (4:){d5), (18)
Vi; = (i — (B:))(B; — (8;))) = (Bi;) — (Bi)(B;), (19)
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Qo = (= @ — B:) + (s — B)E — (@)
= (3(ah +id)) — @), (20)

For the Gaussian Wigner function (11) or Gaussian Chi function (15), the mean
vector is Z, and the covariance matrix takes the form:

(gT 3) - %M“. 21)

Therefore (15) can be re-written as:
vV -QT
—Q U

3.4 Time Evolution of Wigner and Chi Functions

x(5) = exp[—%i’( ) 4 izIET), (22)

Consider an N-mode Hamiltonian:
R V-
H=2(gp)K @p), (23)

where K is a 2N x 2N positive definite symmetric matrix . According to the
lemma introduced in Sec. 1, this kind of Hamiltonian can be transformed into
the following form:
s 1o pfwr O 2 =
=5(&P)S ( 0 1) S(4;9), (24)
where w = diag(wo,ws,--.,ws) and the w;’s are symplectic eigenvalues of the
matrix K. The time-evolution operator exp(—itf{ ) is an element in Mp(2N,
R) and the time evolution of (§;P) is a special case of (5):

exp(itH) (G §)T exp(—itH) = R(t)(& )7, (25)
e R(t) = exp(tJK) = ! ( cos(wt) W™ Si“(‘"t)) S (26)
—wsin(wt)  cos(wt)

is an element in Sp(2N,R). {R(t)|t €R} forms a one-parameter subgroup of
Sp(2N,R) describing the phase flow in the 2N—-dimensional classical phase space:

(Z(t); k(t))T = R(t)(£(0); k(0))7. (27)
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It is well known that for the quadratic Hamiltonian (23), the time evolution
of Wigner function and Chi function follow exactly this phase flow:

W(2:t) = Cn exp|—(5— () R(t)" T MR() ™ (2 — Z(8))T], (28)
x(zt) = exp[—%i'R(t)_T (_VQ _5 ) R(t)™'77 + 4272 (1)]
_ T
= exp[—-;— (_‘gg) (?((tt)) ) 2T +42JZ (t)), (29)

where 27 (t) = R(t)zT

3.5 Reduction of Multimode Squeezed Coherent States

Consider the quantum system (A)+(B) discussed in Sec. 1 whose density
operator is p4p. If we reduce this system by ignoring (B), the expectation value
of an operator O4 which corresponds to a measurement on (A) will become:

(Oa) = Tr{pa0.), (30)

where p4 = Trp)(paB) is a well-defined reduced density operator for (A) which
contains the “influence” of (B) on (A), T'r(p) represents the “partial trace” which
only takes trace with respect to the degrees of freedom of (B).

If the Wigner function W(Z 4, Zpg; ka, kp) corresponds to the original density
operator j4g, then the reduced Wigner function corresponding to 4 will be [12]):

Wa(Za; Ra) = / dEBdEBW(i'A,:E'B; Ea,Es). (31)

As for the Chi function, if X(Z4,Zp; kA, LB) oorresponds to paB, the reduced Chi
function corresponding to g4 will take the form:

Xa(Za;ka) = X(-TA,O kA,O) (32)

which is a restriction of the original X (:c A,xB, kA, kB) to a subspace in the 2N-
dimensional phase space. From the mathematical point of view, it is easier to use
the Chi function to perform the reduction.
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Now let us use N-mode to one-mode reduction as an example. For a given
N-mode Gaussian Chi function (22), we want to make a reduction by ignoring
all the degrees of freedom which correspond to modes 1,2,...,n and leave only
the 0-th mode. Without any calculation, we can write down the reduced Chi

function directly :

Voo —Qoo
—Qoo U

which is a one-mode Gaussian Chi function.

The geometrical interpretation of this reduction process is cutting the original
Chi ellipsoid in the 2N-dimensional phase space by a “shifted (z, k°) plane”—the
plane which is parallel to (z° k°) plane and passes through the center of the Chi
ellipsoid. The section on the Chi ellipsoid gives the “Chi ellipse” on the shifted
(z°, k°) plane which represents the reduced one-mode Gaussian Chi function. A

X 8°) = -39 ) 10T K~ hoaD), (39

schematic graph of this geometrical reduction is shown in Fig. 1.

3.6 Infinite—Mode Squeezed Coherent States

The infinite-mode SqCS is a naive generalization of finite-mode SqCS. Com-
paring the three equivalent representations of finite-mode SqCS’s: (11) , (15) and
(22), we see that (22) can be directly generalized to infinite mode without any am-
biguity or convergence problem. So we will take (22) in the infinite-dimensional
phase space as the definition of infinite-mode SqCS, all the above formulas which
involve (22) can be applied to infinite-mode case.

4 Quantum Brownian Motion

In this section we shall study quantum Brownian motion of a harmonic os-
cillator. The physical picture is a quantum harmonic oscillator immersed in a
dissipative heat bath. In classical statistical mechanics, this problem can be

studied via the Langevin equation:

M X +M~y X +MQP*X =0, (34)
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Fig. 1. Reduction as a geometrical operation in phase space.
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where X, M and 2 are the coordinate, mass and frequency of the oscillator, and
M~ is the friction constant.

The quantum analogue of the Langevin equation can be achieved by several
quantum-mechanical heat-bath models, e.g., the FKM model [3], linear cou-
pling model [4, 5], independent-oscillator model [13], etc. Actually it can be
proved that all these models are equivalent [14]. In this paper we will use the
independent-oscillator model since it is the simplest and most intuitive.

4.1 Independent—Oscillator Heat—Bath Model

Consider the Brownian particle to be a harmonic oscillator immersed in a dis-
sipative heat bath with inverse temperature 3. Using the independent—oscillator
heat-bath model, the total Hamiltonian of the system is [13]:

P2

H=3— 4= 1\452%2%2[‘;’;1 +

1
. S g+ gmastld = Q)7 (35)

2
where Q and P are the position and momentum operators of the Brownian par-
ticle; g;, pi, m; and w; are the position operator, momentum operator, mass and
frequency of the i—th heat-bath oscillator, 1 = 1,2,3,.... This Hamiltonian is a
special case of (23).

It can be proved that in order to make the Brownian particle satisfy the
quantum Langevin equation:

MO +M~y O +MO2Q =0, (36)

the spectral distribution of heat-bath oscillators must obey: -

Zm,wzé(w w;) = ——M'y (37)

i=1

4.2 Quantum Brown Motion in Phase Space

In the following we will study time evolution of the Brownian particle by the
reduced Chi function. The initial condition is chosen to be p = 5, ® pp, where 4
is the initial density operator of the Brownian particle which corresponds to an
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arbitrary Gaussian Wigner/Chi function, and pp is the initial density operator
of heat bath which is in thermal equilibrium at the inverse temperature 3. Since
the detailed calculations can be obtained by combining the calculations in [6] and
(13], here we will only discuss the result and the geometrical interpretation.

Let the degree of freedom of the Brownian particle correspond to the 0-th
mode, and those of the heat bath correspond to other modes. The infinite-mode
Chi function for the initial condition state is (22) with the following parameters:
Uso, Vbo, Qoo and z-f:’, which correspond to the initial conditions of the Brownian
particle, are arbitrary; Z has only two non—zero components corresponding to
z-é since the mean vectors for all heat-bath oscillators equal to zero; and other

elements in the covariance matrix are:

1 1
Ui =g coth(7Awi)ij, (38)
1 1
Vi; = im.-w,- coth(iﬂw,-)&-,-, (39)
Usp = Upj = Vio = Voj = Qio = Qo; = Qi; = 0, (40)

forall i, =1,2,3,....
Combining (29) and (33), we get the time—dependent reduced Chi function of
the Brownian particle (the index 0 for the canonical coordinates is suppressed):

Voo(t)  —Qoo(t)
~Qoo(t)  Uoo(?)
It is easy to write down the corresponding Wigner function by comparing (11)
and (15):

e ki) = expl-3(a. ) ) )T ek )] (41

W(z, k;t) = Crexp[—(z — z(t), k — k())M(t)(z — z(t), k — kc(t))T], (42)

where

17 ( Voo(t) —Qoo(t))
[Uoo(t) Vao(t) — @36(H)] \ —Qoo(t)  Uwo(t) /°
Unlike ordinary reduction methods [5, 6, 7], we obtained this reduced Wigner

M(t) =3 (43)

function without using integration over the heat-bath degrees of freedom.
Comparing (41) with (42) and (43), we see that at any moment the Wigner
ellipse and the Chi ellipse are similar and their areas inversely proportional to
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each other. (Although both areas are time-dependent in general.) When time
approaches infinity, the Brownian particle will approach the equilibrium state
which is independent of its initial condition and consistent with the fluctuation—
dissipation theorem. In Fig. 2, we plot the time evolution of Wigner ellipse and
Chi ellipse of the Brownian particle in phase space.

5 Conclusion and Outlook

The method and result discussed in this paper are valid as long as: (1) The ini-
tial state of (A) is a finite-mode (not necessary one-mode) Gaussian Wigner/Chi
function. (2) The Hamiltonian of (A) is quadratic and with finite number of
degrees of freedom.

If (1) no longer holds, then we will not be able to use an ellipsoid in phase space
to represent the state. However, the phase-space picture continues to be valid
since time evolution of the Wigner/Chi function will still follow the phase flow in
classical phase space. On the contrary if (2) is not true, e.g., as in quantum tun-
neling problems, then time evolution of the Wigner/Chi function will not follow
the phase flow exactly and the phase—space picture will fail. In order to relieve
this limitation, some authors introduced the idea of “effective potential”[15, 16]
so that time evolution of the Wigner/Chi function can be still expressed in terms
of the phase flow. Integration of this modified phase-space picture with the

dissipation mechanism is an interesting question and worth pursuing further.
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ABSTRACT
Correlated squeezed states for a quantum oscillator

_acted by very short in time pulses modeled by special

dependence on time of frequency of oscillator in the form

of seqguence of three delta-kickings of frequency are

constructed based on the method of quantum integrals of

molion. Also the correlation coefficient and quantum

variances of operators of coordinate and momenta are

writien in explicit form.

The aim of the paper is to discuss the squeezing phenomenon
and correlations in the system of quantum paramelric oscillator
with special dependence on time of frequency of oscilllator. We
consider the case when oscillator is acted by very short in time
pulses. This dependence on time we will mode! by 8-kickings of
frequency. In this paper we will consider the case of sequence of
three d8-kickings of frequency. The cases of one and two 8-kickings
of frequency were considered in {11. Short pulses in the form of
8-kicking were discussed briefly in the case of two-mode squeezing
(2l and for the chain of quantum osciliators [3].

Let us consider the quantum parametric oscillator which is
acted by very short in time pulses. We are modeling this action by
the special deperdence on time of frequency of oscillator. We will
use the model of 8-kickings of frequency.

Let the first kick be at initial mement of Lime t,=0. the
second one in the moment t,=1. and the third one at t =2T.

The Hamiitonian of the system is of the form

R=rp2em + me?rtdg%2 (n
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where q is coordinate operator p is momentum pperator, m is the
mass and @(t) is time-dependent frequerncy. We choose the following
dependence on time of oscillator frequency

0PC L) =?- EZxa(t—t. 3 2

n=1
The equations of motion corresponding to Hamiltonian (1) are of

the form
q + lw - 2xd(t) - 2x8(t-1) - 2x8(L-21))q =0 (3

Fallowing thp usual scheme [4] ore can construct integral of
mot ion for the Hamiltonian (1)
Ao L pE . G
AL hmo )1 C(he, fm)l’a} (4)
where functlon € is the SOIULLOH of equation of motion (3). 1If
finct 1un £ oat1<fy additional condilion

te - £ € = 2iw, N -
the integral of motlnn (4) and its hermitian conjugate satisfy
hoson commulation relations. The ground state of the system can bhe
found from Lthe condition

Ay (q.t) =0
and has the form

.. 2
. £ —1/2 [ > q
¥, (q.t) = n_l‘/"'[t‘—— —_— (5)
4 - mw,_ exp 2€ (h/mwﬁ}

The coherent. states of the system can be found as eigenfunctions
of the integral of motion ACL)

ACL) ¥o(q.t) = ay,(q.t).
where a is complex number and has the form

/—— ag o }

-
o€

(£

wa(q,t)=wotq,t)exp{— -
“ evh/mw,

One can see thal ground and coherent states are Gausclian
wavepackets with time-dependent coefficients in quadratic Torm
uriger exponent.ial funciion.

In order to write integral of motion in explicit form one has
to solve equations (2) for the function € in the case of sequencs
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of three 8-kicks of frequencies (2). For the function €(t) one can
write following solutions

e (L) = Aoel:wot + Boe’F“’ot . 10,
— 1w -l t

g,(t) = Ale' o” + Be e O<t<t,,

g,(t) = Aetl + Be b |t ctct

g,(L) = Aaew'ot + Bae—“"'oL S 4

(73
3°

So, one has four regions of changing the function €(t). At three
points of time t,, t,. t, we have following conditions for

funct ions e

2'

st(ti) - 51—1(tz) = 2K et—ltti)'
From this conditions one can find the conditions for coefficients
A; and B,. Taking in the initial moment of time the wave with A =1

and B =0 one has the solutions for e-function after 8-kickings

e = %t | 10, (8)
e, (1) = (1-iew) et + e e t%t ot (D
| x2 . .
e (1) = [(L-terw)®r — 67210t et o [(ikrw )(1+ikrw,)
-]
. (tx/wb)(1—ix/w5)e21wbt]e'iwbt . T2, (10)

g L) = [(1—in/w°)(12— 136" 10,T - xe—ziwot] RIX

K : .
T ¢ B SIS A BT 2 (113
o ,
E 2‘ -
where x-acoswgt * o SinwT.
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If before 8-kickings the system was in coherent states then

after the sequence of &-kickings of frequency the oscillator will

be in correlated squeezed state determined by formulae (83 with
function & given by formulae (11). In order to have explicit

expression for these states in another periods of time one has to
put in formulae (6) the explicit expression for € function in this

period of time given by formulae (7).
The disperssion of coordinate after sequence of &-kickings
will be equal to '

0, =yl |¢> Wy lal¥ >2———{1 +—(12 1%in%e (L-21) +

2x

+ ———Ex —l] anew (t-2t) + — xEx 1]<1n(2w t- Sw'r)
wo wO

The correlation between coordinate and momenta in this state is

not equal to zero and is of the form

R N e (L
4x? 2K '
+ = P-D3%sine (t-21) + ——[x 1] sin2u (t-21) +

w W
-] o

2 w o
' = x[xa—l]sin(zwbt-ngt)]o[l " (FP-1)%cos?e (L-2T) -
-] ' o

- gf—[ 2-1]zsin2w (t-21) +Zf x[xz—l]sin(zw t-50 t)] - 1}1./2

So one has statistical ﬁependenre of operators of ccordinate and

e

¢y

momentum after series of 8-kickings and in some perindc «f 4

the d,ava>J;Jn of Coui diiate 15 less Lhen before 8- leklﬂgS. SO
we have two phenomena due to seria of short in time pulses acted
on oscillator: squeezing phenomenon and phenomenon of <tatistical

dependenice of operators of coordinates and momenta.
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FLOQUET OPERATOR AS INTEGRAL OF MOTION

V. I. Man’ko
Lebedev Institute of Physics, Moscow, Russia

Nonstationary quantum systems have no energy levels. However, for time-dependent periodical
quantum systems, the notion of quasi-energy levels has been introduced in Ref. [1, 2]. The main
point of the quasi-energy concept is to relate quasienergies to eigenvalues of the Floquet operator
or monodromy operators which is equal to the evolution operator of a quantum system taken at
the moment coinciding with the period of the system. The purpose of this article is to relate the
Floquet operator to integrals of the motion and to introduce new operator which is the integral
of motion and has the same quasienergy spectrum that the Floquet operator has. Implicitly, the
result of the article was contained in Ref. (3], but we wish to have an explicit formula for this new
integral of motion.

If one has the system with Hermitian Hamiltonian H(t) such that H(t+T) = H(t), the unitary
evolution operator U(t) is defined as

I‘I’st) = U(t)l‘I’,O), (1)

where [W,0) is the state vector of the system at the initial time. Then, by definition, the operator
U(T) is the Floquet operator and its eigenvalues have the form

f = exp(—ieT), (2)

with & = 1, where ¢ is called the quasienergy state vector. The spectrum of quasienergy may
be discrete or continuous for different quantum systems [3]. We wish to answer the following
question. Is the quasienergy a conserved observable or not? This question is related to another
question. Is the Floquet operator F(T) an integral of motion or not? The answer to the second
question is negative. The operator U(T) does not satisfy the relation

oI(t)
ot
which defines the integral of motion I(t). Thus, the Floquet operator U(T) is not the integral of

motion for the periodical nonstationary quantum systems. But as it was found in Ref. [3], the
operator of the form

+i[H(t),I(t)] =0, (3)

I(t) =UBI0)U~'(¢) (4)

satisfies equation (3) and this operator is the integral of motion of the quantum system. Thus,
for periodical quantum systems, let us introduce the unitary operator M(t) which has the form

M(t) =UR)UTU(L). (5)
This operator is the integral of motion due to the construction given by the formula (4) for any

integral of motion. The spectrum of the new invariant operator M(t) coincides with the spectrum

405 PRECEDING PAGE BLANK NOT FiLMED



of the Floquet operator U(T). We have therefore answered the question about quasienergies.
Since these numbers are defined as eigenvalues of the integral of motion M(t), they are conserved
quantities. Thus we generalize the concept of quasienergies connecting these quantum observables
with the integral of motion of periodical quantum systems.

The construction given above allows us to introduce new invariant labels for nonperiodical
systems, for example, with the time-dependence of the Hamiltonian corresponding to quasicrystal
structure in time. For such systems, the analogue of the invariant Floquet operator (5) will be
the operator

My(t) = U (6)U () U™ (2). (6)

This integral of motion is connected with the two characteristic times of the quasicrystal structure
t, and t;. For poly-dimensional structure, we can introduce the integral of motion

My(t) = U(t) [ﬁ U(ti)] UTi(), (7)

where ¢, {5, ..t are the characteristic times of the system. The eigenvalues of the operators M(t)
and M,(t) are conserved quantities, and they characterize the nonperiodical quantum systems
with quasicrystal structure in time in the same manner as quasienergy describes the states of
periodical quantum systems.
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[1] Ya. B. Zeldovich, JETP 51, 1492 (1966).
[2] V. L Ritus, JETP 51, 1544 (1966) '

[3] I. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum
Systems (Nauka, Moscow, 1979, in Russian). '
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COHERENT STATES AND UNCERTAINTY RELATIONS
FOR THE DAMPED HARMONIC OSCILLATOR

WITH TIME-DEPENDENT FREQUENCY
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Chung Buk 360-763, Korea
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Seoul 136-701, Korea
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Abstract

Starting with evaluations of propagator and wave function for the damped harmonic oscil-
lator with time-dependent frequency, exact coherent states are constructed. These coherent
states satisfy the properties which coherent states should generally have.

Since Schrodinger(1] constructed the coherent states for the harmonic oscillator, they have been
widely used to describe many fields of physics[2,3,4]. Glauber[5] has used coherent states to dis-
cuss photon statistics of the radiation field, and Nieto and Simmons[6] have constructed coherent
states for particles in various potentials. Hartley and Ray([7] have obtained exact coherent states
for a time-dependent harmonic oscillator on the basis of Lewis and Riesenfeld[8]. Recently Yeon,
Um and George obtained exact coherent states for a damped harmonic oscillator with constant
frequency[9] and also the propagator, wave function, energy expectation values, uncertainty rela-
tions and coherent states for a quantum forced time-dependent harmonic ascillator(10).

In this paper we evaluate the wave function and uncertainty relations and construct exact
coherent states for the damped harmonic oscillator with time-dependent frequency described by
the modified Caldirola-Kanai Hamitonian through the path integral method,

= fert Pl L ™2, 2 Sy
H= f(t)[e 5; +e -é-(wz + 4f(t) = 2f(t)3)12] ’ (l)
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where f(t) is dimensionless time-dependent function and has the value f(t) |emo= 1.

Very recently, we have obtained the propagators and wave functions for the damped driven
harmonic oscillator with an external driving force F(t)[11], driven coupled harmonic oscillator{12],
quantum oscillator chains(13] and a mode of the electromagnetic field in a resonator with time-
dependent characteristics of the internal medium([14] by the path integral method. Through similar
calculations in the above papers we may evaluate the propagator for the Hamiltonian of Eq.(1) :

mwe?(t+t)

2xihsin(w [ f(t) dt)

2eF(t+t") 2 27 . ., g
T o * oot [ 1) @)+ g gemle ™) (@)

The solution of the Schradinger equation is given as the path-dependent integral equation with
propagator K, -

Kz tht) = | I exp{ Gyoot(e [ 1) d""m%(t)}cﬂzz

¥(z,1) = / K(z,t;2',0)¢(',0) dz’ , 3)

which gives the wave function (z,t) at time ? in terms of the wave function ¥(z’,0) at time t = 0.
At t = 0 the Hamiltonian [Eq.(1)] reduces to the Hamiltonian of a simple harmonic oscillator, and
the corresponding wave function becomes

' — mwo/h 1/2 Mg ,, _ 7
$(z,0) = (EM 7 Ha(y[ So2a)e T (4)
Substitution of Egs.(2) and (4) into Eq.(3) yields the wave function

\ Mwo k it t
¥(z,t) = (———/—)1/2.C_.exp{—i(n+ 1/2) cot|w/wo cot(w /: f(t) dt) + -21—01}

nnl/T £
x A H,(Dz), (5)
where . . .

£ = 16:%3 sin?(w /0 £(8) dt) + —2";sin(2u /0 f(t) dt)+1, (6)

A = —%‘2—, +.'-';‘T“’%2-{52[cot(w/° £(t) dt) - %}(t)]
~ oot [ S(®) dt) + 5L} ™

3¢ 2

D= %e?, ReA=-%—, w2=wg—%. (8)

To evaluate the uncertainty values, we calculate the quantities
oo
<ZT>mn = / Y (z,t)z¥n(z,t) dz
-00

v+l ™
_\/_ﬁ_ e ¢a(¢)5mm+1 + \/‘/2_'; e "(')5-...,.-1
Bm ne1 + I“‘Sm.n—l ’ (9)
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<mipln> = [~ o0t L de
= »/m(—i‘/f;‘h)e-'ma,.. nt1 + V(=i ‘/_Ah) e~ g s
= N bmntt + 7 mncr s (10)
<m|z}|n>= Vin+2)(n+1) p? bppsa+ (20 + Dpp*bma +yn(n = 1) p*26p0a, (11)
<mlptIn>= 0 + D +1) Plmnsa + (20 + D0 bmn + Y28 = 1) 17 mnca,  (12)

<mI%(=p+pz)ln> = Y(n+2)(n+1) pném,
| + Vn(n=1) 49 6nnez (13)

m,n

where .
8(t) = cor‘[i cot(w / £(t) dt) + i] (14)
u(t) = 00(1) fe !.71 ‘l(t) (15)
n(t) = —ih%e“(‘)
. [muwoh 1 1 ") ~
= i Eexpli'rt{l - ’w—o[f’ 2wf(t))
= feot(w [ f(8) dt) + L))
ﬂl‘;oh %eiqtﬂ(t)ei[cot'l o(t)+6(t)] , (16)
() = S i€leortw [ £10) &)= gl oot [ 1(0) ) + 1)) (17)

B(t) = T+ o(t) . (18)

With the help of Egs.(9)-(12), the uncertainty relations in the various states can be obtained as

(A2} (Apyllon = (<2?>=-<2>?)(<p?> - <p>)2

= Jon+2)m+1)[uln|
= g\/(n+2)(n+l)ﬁ(t), (19)

(A2) (B A = 2n + 1)A() (20)
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(Az(Ap)IE = 5(2n +B() (21)

Changing (n + 1) to n and (n +2) to n in Egs. (20) and (21), respectively, we can easily obtain
the uncertainty in the (n — 1,n) state and (n — 2, n) state.
Now we return to the coherent states. Before we construct the annihilation operator a and

creation operator at, we will briefly discuss the properties of the coherent states. These states
can be defined by the eigenstates of the nonhermitian operator a,

ala>=ala>. (22)

Using the completeness relation for the number representations, we expand |a> as

1 em Q"
la> = e {1/l E:ow [n>
o0/t et 5 (23)
where | 0 > is the vacuum or ground state and is independent of n. The calculation of < 8| a >

in Eq. (23) gives
<Bla>= o~ ol +18P)+ap® (24)

Here, Eq. (24) has nonzero values for a # 8, and thus the states are not orthogonal, but when
| @ — B |*—— B the states become orthogonal.

Since the eigenvalues a of the coherent states are complex numbers u + iv, the completeness
relation of the coherent states is written as

/|a><al£‘;a-= ) (25)

where 1 is the identity operator and d?a is given by d(Re u)d(/m v).
From Egs. (9),(10),(15) and (16), we have the relation

nu" —n'p=1h. (26)

We can define the annihilation operator a and creation operator al for the damped harmonic
oscillator with time dependent frequency as

1
a = ;g(n: - pp) ,

1
ol = FWp-n"2), (27)

where the expressions of z and p by a and at are

z uta+ pai )
p = na+na. (28)
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Since 5 is not equal to s in Eqs. (15) and (16), we can easily confirm that a and at are not
Hermitian operators, but the following relations are preserved :

[z,p] =ik,

[a,af]=1. (29)
Here, the operators a and a' are different from a} and ay, i.e., creation and annihilation operators
of the harmonic oscillator, and can be expressed as

a = Mag+va),

at = plao+2\al. (30)
Therefore, the coherent states of the damped harmonic oscillator with time-dependent frequency
are the squeezed states of the simple harmonic oscillator.

We can evaluate the transformation function < z | a > from the coherent states to the
coordinate representation | z >. From Egs. (22) and (27) we have

ko .
[qz-p75]<z[a>-tha<z|a>. (31)
Solving this equation, we obtain the coordinate representation
<z|la>= Nexp[%az — (2thu)"'n 2% . (32)
Here, N is the integal constant constant. Choosing N to satisfy Eq. (25), we find the eigenvectors

of the operator a given in the coordinate representation | z > as

1 1u*
slaff-3Ea7, (33)

1 P
<z|a>= ———ro -z'4+ -z~
B 2p

exp[-l_ 1
(2xpps )4 7 2k
where

(2”‘#.)-1/4 = (Z_:"Oh;)xufl/ze-;z'

S _manl e
2hﬂ = 2% £ge [l td(t)], (34)
“-” - e-ﬁ‘(t) .

Next, we prove that a coherent state represents a minimum uncertainty state. With the help
of the relation between a,a',z and p, we evaluate the expectation values of r, p, z? and p? in state
| @ > as follows :

<z> = <a|pat+pat|a>=p"a+pa’,
<p> = <a|na+na|a>=n"a+na",
<z?> = p%?+ ppr(l + 2aa") + p*a"?, (35)

<p’> = i+l 4+ 2aa") + n%a? .
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FIG. 1. (Az)? for the (0,0) state as a function of wt at various values of v/w with w/{ = 1.

From above expressions, we get

(B2) = = o™, (36)
(Bpf = m = T rengie) (¥

and thus we finally obtain the uncertainty relation

(Ba)(8p) =11 Il n 1= 8(0) (39)

Equation (37) is the minimum uncertainty corresponding to Eq. (13) in the (0,0) state.

Taking v = 0 and f(t) = 1, all the formulas we have derived are reduced to those of the simple
harmonic oscillator. The propagator [ Eq.(2)] and the wave function [ Eq. (5) ] do not have similar
forms to those of Cheng[15] and others[16], but are of new form. We should point out that the
same classical equation of motion can be obtained from many different action, and thus one may
have many different propagators correspoding to the actions.

Figures 1, 2 and 3 illustrate the behaviors of (Az)?, (Ap)? and Ap- Az as a function of wi at
various values of v/w and w/( for F(t) = e¢* at ¥ # 0. When oscillation starts, (Az)? and (Ap)?
have the period II, but their periods decrease rapidly with increasing time, and the amplitude of
(Az)? decreases exponentially, while that of (Ap)? increases exponentially. The uncertainty for
the (0.0) state with period IT is reduced to that of the harmonic oscillator of 0° and 180°.

From all of the above results, we conclude that the coherent states for the damped harmonic
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FIG. 2. (Ap)? for the (0,0) state a s a function of wt at various values of v/w with w/(=1.

2(ap-a2)

FIG. 3. Ap- Az for the (0,0) state versus wt at various values of v/w with w/{ = 3.
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oscillator with the time-dependent frequency described by the modified Caldirola-Kanai Hamilto-
nian which we have constructed satisfy the renowned properties of coherent states.
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Abstract.

The behavior of the electromagnetic field in an ideal
cz-i*v with oscillating bouncary 1is considered 1in the
rezc-znce long-time limit. The rates of photons creation
*rom vacuum and thermal states are evaluated. The sgqueezing
cozfficients for the field modes are found, as well as the

backward reaction of the field on the vibrating wall-

1. Field Quantkzation in a Cavity of Variable Length

Here we give the results of our recent investigations relating
to *he behavior of the quantized modes of the electromagnetic field
inside a resonator with oscillationg walls. We consider the electro-
magnetic field in an empty resonator formed by two ideal conducting
plain boundaries x =0 and x =L{t>, and restrict ourselves to the
linearly polarized mcdes with the electric vector parallel to the
boundaries. Then the field car be described by means c¥f the single
scalar equation for the corresponding'ccmFOﬁett of the veztzc- poten-
tial with the nonstationary boundary conditicrs 1] wwe aszume ¢ = 1}

Por T P T Oy 0O < x < Lt pl{,t) = p(ldt>,t) = 0 1)
The g.artization crocedure in this case was proposec by Mcore ([(113.
{Arother approach including the case of a massive boson scalar field
waz investigated in ref.[(2].) The starting point of Moore’'s method is

the follicwing choice of the furndamental solutions of eg- (1),

W fa,t) = (4nn)-”q{%xp[—LnnE(t-x)] - exp[—innk(t+x)]}, (2
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furction R(Z) being a solution of the functional equation

F:[c+L(L)] - R(:—uu] =2 3

I~ tre stationary case LCto = LO the sclution of eq. (2} ig ¢trivial:

Fr) = ¥/L, Thus mede functions are usual standing waves

o, -y A2 . e (Y
L (x,t) = 1{mm) sfn(nnAfLo)edp( Lnnt,LG)- (4)

Ar approximate solution of {(I) for a slowly moving wall was found 1in

[12. But in the most irnteresting case of the parametric resonance

Lty = 1_0[ 1+ z-sin(mqm], w, = gLy @ = 1,2..-, l£] « 1 (%)

thet solution appears valid orly for not very large values of time

satisfying the restriction z;tho « 1. The correct asymptotic e:pres-
R(t) - t in the long-time limit fwt » 1

sion for the function p(2)

was chtained in refs. [3-51 (Lo =c =1, £=exp[(—1)q+1-nq1t]):

Ktd = - CZ/nq)-Im{ln[l + F + exp(inqt)(l—f)]}, (&)

Far the motionless walls the field operator ¢ in the Heisenberg

picture can be developed over the set of functions w;mfx.t)=

s . i Py (0) . A+ ‘o) * -~ RS -+
2w = b} . b} =
o, Ll Z{b"w" Cx, tD + bn[wn C’x.t-] }, [ b b ] & . (7)

If the right wall oscillates only during the time interval 0 = ¢t = 7,

then for t >~ 7 the field operator ¢an be written in two forms,

; = Z{gnwn + g;w;} = Z{;mw;é)+ a” ‘“j } (8)
where wn(x.t) is the solution of tﬁe nonstationary problem (1) coin-
ciding with wga'at t < 0. It seems reasonable to assume that measur-
ing devices react to steady-state standing waves (4) which are wave
functions of physical quantum states possessing definite energy
values. Then just the set of operatoré (Z,;+) has the physical sense
at ¢ » T« Since all guantum properties of the field were defined with
respect to the state determined by the set of operators <Z,£+) {which

were "physical" operators for ¢t < 0 ), we have to expand the "new

PN

e, oo, +
operators f(a,a ) cover the "cld" ares (b, b .

a = Z{t a s BT } (9)
m noorun 7' run
To calzilate the Bogoliubov coefficients anm and ﬁnm one should take

intag account that both systems of mode functions (2) and (4) cornsti-
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+g zZzTolete orthonormal sets with respect tc the scalar prcocduct [L13
Ldto
I * . o
(yox) = —Lfax{?xt ¥ }, (xKEOx/Jt. f10:

'
1

Tior the fpllowing relations can be obtained [3-53,

. t-L . +1
“ram . o2 o .
PURNUR & T o memd— o e . = e Y €4
) 2 (.m.,- 7;) _rd): E.'~p{ 12 gV =2 LO.\_) + (n + mx ]}. L
'y 3
. t-L -1
o

~g=zi.ed calcula*ions of these irtegrals were performed in [3-T1.

=1 result for g = Zr is as foliows (&=¥¥/ary,

sin[nfzrné:mY/Er] sin[n(n:m?]

exp[in(ntm)(l—if?r)].ﬂl??

! 2rndIm) sxn[n(ntm)/?r]
ne mair resorarce case of r=! the following expressizr for toe

wsdul: szuared cf the Bogoliubov coefficients can be obtalned,

:'j’r'un.‘ m [1 - (-I)m.‘CDS(ETUTfS.‘]

= : [+ (—1) 0 ] (13
2 2
;2 NI (2nd £ m)

2. Rates of Photons Generation
The t-tal rumber of photons created in the m~th mode from the

vacuum state tc the time instant t equals

e ST z
F_ = <Olaa |05 = LIA 1 (14)

Omitting the detailes of calculations given in [3-0I we present the
final result r = 1)
P, % tmn®) T [Inon/28) - -™ 1r(1/208 ], (1)

Sirze in the case under study é(t)=exp(—n£:)/n, we get the fcllowirg

razt2 cf photons generation in the m—-th mode when the wall wv:brates at
t-~e twice frequency of the first resonator eigenmode for st::l:

dF sdt = te/nm) [ 1 - -0 7. (15
Tr1z result is valid in fact ormly for not verv .arge nunters m. Since
.=~ rgal situationes we should limit time t by the resonstcor rslaxation
t:me 1t fdue to tre cissipation irzide walls), the maximum number c¥

rhctones generated In the m—th mode eguals approximately

N 4 o\*"

N
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2fs. 15,72,

tsz:llating

Fapers

izs (1SY-(17

. 2
F.ox "gw )
l#

3 ilak g

(17
e

LY P ) .
X Cnte {.;'-L‘U_‘{ i g S (1 nim+1) ]},

i the gual:ty factor of the resonator s m—-th mode.
differ the

where the problem of photons créationwin a resonatcor with

essentially from results of

ideal mirror was alsc considered. Howeser the authors of

did not take into account the deep recorstructicr of +tk=

inside the resonator in the 1long-time 1limit. Therefore

photons generatibn obtained in [6] and (7] was proportio-

2 . : - . .
! 1n essance to (£uh) s whereas our *ormulas show that this rate iz

o

to the first powsr of the product cmq- The quadratic law

is valid only in the short-time approximation under th=

zord tion Fq «“ 1, as was shkowr in [81].
If the initizl demrsity matrix of the field corresgcords +3 the
Ela-zk dist-ibuticn with finite temperature. ther the aversge number

- - = ——
=¥ aofditionxl

where © =«TL¢/nhc, x is

The “i-al number of

"thermal" quarta created in the s—th mode egusis 4]

. < . =1
- - _ pvac ‘ 2 21 fo.. resy e
= Fm Fm, = E{igmi + ’ﬁ‘hm’ } {ev...p (R/3) ‘}
A
2 - " ® exp(/@) + 1 (18
() TrH[ 1 - =1 ]Zln + OXZE/ A,
j=1 exp(/e) - 1

Boltzmann's constant, 7T - temperature.

"thermal” photons does not depend on time.

Moreover. :n the even modes it is almost zerc up tc the terms of the
order of I&/m. In the low temperature limit & « 1| and “or «t:1 [4]
- -1 /@ e
AP = 4t T 1 - - ™ ] eTHO o pues, (19
m W
In the high temperature limit cone gets [41
= =3 / e - (=)' + Oflni2ey Y. o
&F (@/2m) [ 1 -7 ] O(1n:2eY) 20
If <re resorator has a finite guality factor OCm in the m—th mode,
tre- tre temperature ccrrecticns can be neglected provided
&= e By 2 - - BT I[Sth]
© B s P O (21
©
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3. Squeezing Coefficients
MNew let us consider variances of canonical coordirates and

r-me-+tz -operators {(gquacdrature components)

. - fa Sy o~ R
'y = + o = ’ - ~f’-\ (22

T (a.'h dm) ' p.'h t (.u.-n .'!;) <2)
ial quantum state of the fielc was vacuum or coherent one,

“
+

e
T

]

s

-

.=z €=]1lowing general formulas are valid (81,

ad
1

L'}
}

ot

1 2 *
= - + 3 + Re (o -3 =)
“% x 2 ; '(nml € %un hnm)}’ “
m ™
1 2 »
= -+ 3 - Rela_ - ) t24)
“e p z * LRl el m Pram }’
m"me n
-
7 R (25
T £ Lim “un £
mm 7
Tm =g ~ase of =2 we have [4,T2
o tew) = ;- - (n‘m)"{ 1 - -0 - (am) -8 (am) }, (26
* v .
whers <iix) means the integral sine function:
x
si{x) = Jdt-sin(t)/t- (272
m

5z zse that the variance is always less than I%ts value i The vacuum

. N e - .
state o "C=1/2. Th:s means that the field occurs in  the squeszed

state. The relative sgueezing coefficient k = 1- Zot . assumes the
Tmm
maximum value K ,=0.22 for m = 1. For large m x 1 this coefficient

slowly decreases according to the asymptotic formula

K, = 2/(n°m) . (28)

The canorical momentum variance irmcreases in time according to

+~@ zame > aw as the number of created gquanta (1S). The general depen-
dences =f variances on time are rather intricate. As was shown 1in
I€1, in *he short time limit £t « 1 there is a small squeezing in tke
anorlcal momentum varlancée: &pp X %(l-nst) (for m = 1). Meanwh:ile inr
*+hs lgng time limit the situatior is guite opposite: there is some
squeezirg of the canorical ccordinate, and unlimitedly growing 1ir
t:me variarm-—e c¥ the caronical momentum. As to the cocvariance of the
comrainate and momentum (25), it turns cut to te =2gual to Tero U o
tb=s tarms cf the order of (:z)_l- This m=ans that the field occurs ir

s zc.eered but urcorrelated state. Ncretheless, this state is rot =

419 QR\G\\“"\‘ uN—\ﬂ
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e

-i1-i=um uncertainty state, since o when g£t:1- This is

ad
pp XX
evzlained by & strong internode interaction.

4. Back Reaction on the Oscillating Wall from the Field

well known that vacuum fluctuations of electromagnetic

U]

“iglZ v=zult in  an attractive Casimir’'s force betweern uncha-ged
n

¢ plates [9-11]. The general expression for the force press-

i
if

Te i

1
a
.
Vr
r
(1
4
[n}

wall { more precisely the I“—component of the ernergy-

[}
ui

—zmert_r ts-sor of the field ) was calculétéd in [10,12]:

F == [ gt=Ldtd> + gCt+lCt20 7, (29)
wrere funzction gy is expressed through R-function introduced accor-
ding to ege. (2} and (I) as follows ( in dimensionless units; remind

trat we consider the case of "one—-dimensional” electrodyrnamics )
Y '

1 RU'Cyd> 5 ¢ RUCYD q2 n? .
Y = - = — — Y T, . T
&2 pey 3 [ R cys ] + = (R Tyl (Z0D)

R*Cwo
In the zase of motionless wall (29) and (Z0) lead to the known

e=gression for Casimir’'s force in one dimemnsior

F® = —phe24L : (31

The co-rections to (31) in the limit of small velocities cof the wall
(with respect to the velocity of light) were zalculated ir [{T]. The
additional force appears attractive and propo-tional to the sguare of
wall ‘s velocity. Here we calculate the same force using the long-time
asymptot:cs of FE-function (6). Since |df/dt]| = |£f] << ¢ , we can
differe~tiate R-function with respect to time believing parameter ¢

to be comstant. Then the first three derivatives are as fcllows,

RCt> = SF8C LD, (32)
» a2 : . p -——
BYCtD = 26C1-F"2 ng sindngtD oo, (Z2)
FRrotd = 2r1-F2oCngo? [Cz‘ +2%coscnqed+c1 =21 +51n2c'nqt.‘)]]if’e.’t). (74)
e = [t + 2%+ c1-r% coscnqo 17 (T5)

Since the force exhibits rapid oscillations, it seems reasonable tc
average all time dependent functiomns contained in (35) over the
period cf oscillations T = &-g. All integrals can be calculated

exactiy with the aid of formula ([1484], eq.2-5.16(22))
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r
‘e

: 2 2,12 /
Z-EREAe i (° - &7) - al"
da = TTEY
- - - 2 2412
J o+ Bocoslal (= - & ) b
c : .
=z T2t we have
s » -.24 - i a5 gu-"-, (T
RN STs = ;5 g T - \ -
R R 22 = woR™ R = LoongdloresTl-a0, (73
Tmge-+: -7 thece ewpreesions into (29) and (30) we get f.nally 1r
Zime-ziolees urites
. - n 2 1, 2y o -4 -
oreom - Bl e j0 - N+ e)

- 3 = U tFis formula ceincides with {Z1). Note that this is not thre
~zz--z--c zase (the minimal resorance value is g = 2y, so that phzo-
ta=s a-e -—ot created inside the resonator, and the force conserves
itz wacuLm value. For g = T we have not attraction, but am  exponer-=
ti1zllv ircreasing pressure 50 the oscillating wall due to *the cra2a-
*.zn of -eal photone in the cavity. By the way, formula (I9) =R OWS
igtinctly that for ¢t » x» the physical results do not depend or the
igr c¥ the parameter £ characterizing the dimensiorless amglitude o=

wsll‘'c vibrations, since <F» is proporticnal to exp(lejngt. -

S. Discussion.

Let us summarize the main results. We have presented a new solu-—
tion for mode functions of the electromagnetic field irsice ar ideal
cavity with ocssillsting wall in the lomg-tiwz vesorante limit. P
appears that the f.eld modes structure is signi<icantly c-anged in

tkiz limit im com-arisor with the case cf mctiorless bourdesries. It

i¢ gz=- Z:s*inctly 1:f one compares, e.g-, the time derivatives of
farzTiCoTE ﬁ°%g) and R(f) giver by (&): ir the motiorless case one
gets v-.ty "in dimensionless unitsl, whereas 1n the lcong-%tims ~&sI—
~a-zz l:m:1*t the corr-esponding value appears much less than urity for
z1m-e+ 51 imstants of time excepting those when cosingt: 15 very
closs =z *! izee eq. (I2)). Fhysically this cha~ge of the fiz.d maces
ctrurture marifests itself im the transition from the gquadrat:c lax

f chotone generatior in the short-time approximation to the 1l:-ear

law in the lorg-t:me asvmrtotics. We have established also the gpcossi-
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of optairing some squeecing although rather moderate) 1n the
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